skip to main content


Title: Asymptotic normality of robust risk minimizers
This paper investigates asymptotic properties of a class of algorithms that can be viewed as robust analogues of the classical empirical risk minimization. These strategies are based on replacing the usual empirical average by a robust proxy of the mean, such as the (version of) the median-of-means estimator. It is well known by now that the excess risk of resulting estimators often converges to 0 at optimal rates under much weaker assumptions than those required by their “classical” counterparts. However, much less is known about the asymptotic properties of the estimators themselves, for instance, whether robust analogues of the maximum likelihood estimators are asymptotically efficient. We make a step towards answering these questions and show that for a wide class of parametric problems, minimizers of the appropriately defined robust proxy of the risk converge to the minimizers of the true risk at the same rate, and often have the same asymptotic variance, as the estimators obtained by minimizing the usual empirical risk. Moreover, our results show that robust algorithms based on the so-called “min-max” type procedures in many cases provably outperform, is the asymptotic sense, algorithms based on direct risk minimization.  more » « less
Award ID(s):
1908905 1712956
NSF-PAR ID:
10204546
Author(s) / Creator(s):
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    We study the regression relationship between covariates in case–control data: an area known as the secondary analysis of case–control studies. The context is such that only the form of the regression mean is specified, so that we allow an arbitrary regression error distribution, which can depend on the covariates and thus can be heteroscedastic. Under mild regularity conditions we establish the theoretical identifiability of such models. Previous work in this context has either specified a fully parametric distribution for the regression errors, specified a homoscedastic distribution for the regression errors, has specified the rate of disease in the population (we refer to this as the true population) or has made a rare disease approximation. We construct a class of semiparametric estimation procedures that rely on none of these. The estimators differ from the usual semiparametric estimators in that they draw conclusions about the true population, while technically operating in a hypothetical superpopulation. We also construct estimators with a unique feature, in that they are robust against the misspecification of the regression error distribution in terms of variance structure, whereas all other non-parametric effects are estimated despite the biased samples. We establish the asymptotic properties of the estimators and illustrate their finite sample performance through simulation studies, as well as through an empirical example on the relationship between red meat consumption and hetero-cyclic amines. Our analysis verified the positive relationship between red meat consumption and two forms of hetro-cyclic amines, indicating that increased red meat consumption leads to increased levels of MeIQx and PhIP, both being risk factors for colorectal cancer. Computer software as well as data to illustrate the methodology are available from http://www.stat.tamu.edu/~carroll/matlab__programs/software.php .

     
    more » « less
  2. Abstract

    This paper investigates robust versions of the general empirical risk minimization algorithm, one of the core techniques underlying modern statistical methods. Success of the empirical risk minimization is based on the fact that for a ‘well-behaved’ stochastic process $\left \{ f(X), \ f\in \mathscr F\right \}$ indexed by a class of functions $f\in \mathscr F$, averages $\frac{1}{N}\sum _{j=1}^N f(X_j)$ evaluated over a sample $X_1,\ldots ,X_N$ of i.i.d. copies of $X$ provide good approximation to the expectations $\mathbb E f(X)$, uniformly over large classes $f\in \mathscr F$. However, this might no longer be true if the marginal distributions of the process are heavy tailed or if the sample contains outliers. We propose a version of empirical risk minimization based on the idea of replacing sample averages by robust proxies of the expectations and obtain high-confidence bounds for the excess risk of resulting estimators. In particular, we show that the excess risk of robust estimators can converge to $0$ at fast rates with respect to the sample size $N$, referring to the rates faster than $N^{-1/2}$. We discuss implications of the main results to the linear and logistic regression problems and evaluate the numerical performance of proposed methods on simulated and real data.

     
    more » « less
  3. Motivated by modern applications in which one constructs graphical models based on a very large number of features, this paper introduces a new class of cluster-based graphical models, in which variable clustering is applied as an initial step for reducing the dimension of the feature space. We employ model assisted clustering, in which the clusters contain features that are similar to the same unobserved latent variable. Two different cluster-based Gaussian graphical models are considered: the latent variable graph, corresponding to the graphical model associated with the unobserved latent variables, and the cluster-average graph, corresponding to the vector of features averaged over clusters. Our study reveals that likelihood based inference for the latent graph, not analyzed previously, is analytically intractable. Our main contribution is the development and analysis of alternative estimation and inference strategies, for the precision matrix of an unobservable latent vector Z. We replace the likelihood of the data by an appropriate class of empirical risk functions, that can be specialized to the latent graphical model and to the simpler, but under-analyzed, cluster-average graphical model. The estimators thus derived can be used for inference on the graph structure, for instance on edge strength or pattern recovery. Inference is based on the asymptotic limits of the entry-wise estimates of the precision matrices associated with the conditional independence graphs under consideration. While taking the uncertainty induced by the clustering step into account, we establish Berry-Esseen central limit theorems for the proposed estimators. It is noteworthy that, although the clusters are estimated adaptively from the data, the central limit theorems regarding the entries of the estimated graphs are proved under the same conditions one would use if the clusters were known in advance. As an illustration of the usage of these newly developed inferential tools, we show that they can be reliably used for recovery of the sparsity pattern of the graphs we study, under FDR control, which is verified via simulation studies and an fMRI data analysis. These experimental results confirm the theoretically established difference between the two graph structures. Furthermore, the data analysis suggests that the latent variable graph, corresponding to the unobserved cluster centers, can help provide more insight into the understanding of the brain connectivity networks relative to the simpler, average-based, graph. 
    more » « less
  4. Many modern machine learning tasks require models with high tail performance, i.e. high performance over the worst-off samples in the dataset. This problem has been widely studied in fields such as algorithmic fairness, class imbalance, and risk-sensitive decision making. A popular approach to maximize the model’s tail performance is to minimize the CVaR (Conditional Value at Risk) loss, which computes the average risk over the tails of the loss. However, for classification tasks where models are evaluated by the 0/1 loss, we show that if the classifiers are deterministic, then the minimizer of the average 0/1 loss also minimizes the CVaR 0/1 loss, suggesting that CVaR loss minimization is not helpful without additional assumptions. We circumvent this negative result by minimizing the CVaR loss over randomized classifiers, for which the minimizers of the average 0/1 loss and the CVaR 0/1 loss are no longer the same, so minimizing the latter can lead to better tail performance. To learn such randomized classifiers, we propose the Boosted CVaR Classification framework which is motivated by a direct relationship between CVaR and a classical boosting algorithm called LPBoost. Based on this framework, we design an algorithm called alpha-AdaLPBoost. We empirically evaluate our proposed algorithm on four benchmark datasets and show that it achieves higher tail performance than deterministic model training methods. 
    more » « less
  5. We prove a new generalization bound that shows for any class of linear predictors in Gaussian space, the Rademacher complexity of the class and the training error under any continuous loss ℓ can control the test error under all Moreau envelopes of the loss ℓ . We use our finite-sample bound to directly recover the “optimistic rate” of Zhou et al. (2021) for linear regression with the square loss, which is known to be tight for minimal ℓ2-norm interpolation, but we also handle more general settings where the label is generated by a potentially misspecified multi-index model. The same argument can analyze noisy interpolation of max-margin classifiers through the squared hinge loss, and establishes consistency results in spiked-covariance settings. More generally, when the loss is only assumed to be Lipschitz, our bound effectively improves Talagrand’s well-known contraction lemma by a factor of two, and we prove uniform convergence of interpolators (Koehler et al. 2021) for all smooth, non-negative losses. Finally, we show that application of our generalization bound using localized Gaussian width will generally be sharp for empirical risk minimizers, establishing a non-asymptotic Moreau envelope theory 
    more » « less