skip to main content


Title: Mapping network states using connectivity queries.
Can we infer all the failed components of an infrastructure network, given a sample of reachable nodes from supply nodes? One of the most critical post-disruption processes after a natural disaster is to quickly determine the damage or failure states of critical infrastructure components. However, this is nontrivial, considering that often only a fraction of components may be accessible or observable after a disruptive event. Past work has looked into inferring failed components given point probes, i.e. with a direct sample of failed components. In contrast, we study the harder problem of inferring failed components given partial information of some ‘serviceable’ reachable nodes and a small sample of point probes, being the first often more practical to obtain. We formulate this novel problem using the Minimum Description Length (MDL) principle, and then present a greedy algorithm that minimizes MDL cost effectively. We evaluate our algorithm on domain-expert simulations of real networks in the aftermath of an earthquake. Our algorithm successfully identified failed components, especially the critical ones affecting the overall system performance.  more » « less
Award ID(s):
1916670
NSF-PAR ID:
10204782
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Big data
ISSN:
2167-6461
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Singh, Mona (Ed.)
    Microbial associations are characterized by both direct and indirect interactions between the constituent taxa in a microbial community, and play an important role in determining the structure, organization, and function of the community. Microbial associations can be represented using a weighted graph (microbial network) whose nodes represent taxa and edges represent pairwise associations. A microbial network is typically inferred from a sample-taxa matrix that is obtained by sequencing multiple biological samples and identifying the taxa counts in each sample. However, it is known that microbial associations are impacted by environmental and/or host factors. Thus, a sample-taxa matrix generated in a microbiome study involving a wide range of values for the environmental and/or clinical metadata variables may in fact be associated with more than one microbial network. Here we consider the problem of inferring multiple microbial networks from a given sample-taxa count matrix. Each sample is a count vector assumed to be generated by a mixture model consisting of component distributions that are Multivariate Poisson Log-Normal. We present a variational Expectation Maximization algorithm for the model selection problem to infer the correct number of components of this mixture model. Our approach involves reframing the mixture model as a latent variable model, treating only the mixing coefficients as parameters, and subsequently approximating the marginal likelihood using an evidence lower bound framework. Our algorithm is evaluated on a large simulated dataset generated using a collection of different graph structures (band, hub, cluster, random, and scale-free). 
    more » « less
  2. Context-free language reachability (CFL-reachability) is a fundamental framework for program analysis. A large variety of static analyses can be formulated as CFL-reachability problems, which determines whether specific source-sink pairs in an edge-labeled graph are connected by a reachable path, i.e., a path whose edge labels form a string accepted by the given CFL. Computing CFL-reachability is expensive. The fastest algorithm exhibits a slightly subcubic time complexity with respect to the input graph size. Improving the scalability of CFL-reachability is of practical interest, but reducing the time complexity is inherently difficult. In this paper, we focus on improving the scalability of CFL-reachability from a more practical perspective---reducing the input graph size. Our idea arises from the existence of trivial edges, i.e., edges that do not affect any reachable path in CFL-reachability. We observe that two nodes joined by trivial edges can be folded---by merging the two nodes with all the edges joining them removed---without affecting the CFL-reachability result. By studying the characteristic of the recursive state machines (RSMs), an alternative form of CFLs, we propose an approach to identify foldable node pairs without the need to verify the underlying reachable paths (which is equivalent to solving the CFL-reachability problem). In particular, given a CFL-reachability problem instance with an input graph G and an RSM, based on the correspondence between paths in G and state transitions in RSM, we propose a graph folding principle, which can determine whether two adjacent nodes are foldable by examining only their incoming and outgoing edges. On top of the graph folding principle, we propose an efficient graph folding algorithm GF. The time complexity of GF is linear with respect to the number of nodes in the input graph. Our evaluations on two clients (alias analysis and value-flow analysis) show that GF significantly accelerates RSM/CFL-reachability by reducing the input graph size. On average, for value-flow analysis, GF reduces 60.96% of nodes and 42.67% of edges of the input graphs, obtaining a speedup of 4.65× and a memory usage reduction of 57.35%. For alias analysis, GF reduces 38.93% of nodes and 35.61% of edges of the input graphs, obtaining a speedup of 3.21× and a memory usage reduction of 65.19%. 
    more » « less
  3. Line-of-sight (LOS) is a critical requirement for mmWave wireless communications. In this work, we explore the use of access point (AP) infrastructure mobility to optimize indoor mmWave WiFi network performance based on the discovery of LOS connectivity to stations (STAs).We consider a ceiling-mounted mobile (CMM) AP as the infrastructure mobility framework. Within this framework, we present a LOS prediction algorithm based on machine learning (ML) that addresses the LOS discovery problem. The algorithm relies on the available network state information (e.g., LOS connectivity between STAs and the AP) to predict the unknown LOS connectivity status between the reachable AP locations and target STAs. We show that the proposed algorithm can predict LOS connectivity between the AP and target STAs with an accuracy up to 91%. Based on the LOS prediction algorithm, we then propose a systematic solution WiMove, which can decide if and where the AP should move to for optimizing network performance. Using both ns-3 based simulation and experimental prototype implementation, we show that the throughput and fairness performance of WiMove is up to 119% and 15% better compared with single static AP and brute force search. 
    more » « less
  4. null (Ed.)
    Many methods in learning from demonstration assume that the demonstrator has knowledge of the full environment. However, in many scenarios, a demonstrator only sees part of the environment and they continuously replan as they gather information. To plan new paths or to reconstruct the environment, we must consider the visibility constraints and replanning process of the demonstrator, which, to our knowledge, has not been done in previous work. We consider the problem of inferring obstacle configurations in a 2D environment from demonstrated paths for a point robot that is capable of seeing in any direction but not through obstacles. Given a set of survey points, which describe where the demonstrator obtains new information, and a candidate path, we con-struct a Constraint Satisfaction Problem (CSP) on a cell decomposition of the environment. We parameterize a set of obstacles corresponding to an assignment from the CSP and sample from the set to find valid environments. We show that there is a probabilistically-complete, yet not entirely tractable, algorithm that can guarantee novel paths in the space are unsafe or possibly safe. We also present an incomplete, but empirically-successful, heuristic-guided algorithm that we apply in our experiments to 1) planning novel paths and 2) recovering a probabilistic representation of the environment. 
    more » « less
  5. We consider the problem of model selection using the Minimum Description Length (MDL) criterion for distributions with parameters on the hypersphere. Model selection algorithms aim to find a compromise between goodness of fit and model complexity. Variables often considered for complexity penalties involve number of parameters, sample size and shape of the parameter space, with the penalty term often referred to as stochastic complexity. Current model selection criteria either ignore the shape of the parameter space or incorrectly penalize the complexity of the model, largely because typical Laplace approximation techniques yield inaccurate results for curved spaces. We demonstrate how the use of a constrained Laplace approximation on the hypersphere yields a novel complexity measure that more accurately reflects the geometry of these spherical parameters spaces. We refer to this modified model selection criterion as spherical MDL. As proof of concept, spherical MDL is used for bin selection in histogram density estimation, performing favorably against other model selection criteria. 
    more » « less