skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photon conversion in thin-film lithium niobate nanowaveguides: a noise analysis
Wavelength transduction of single-photon signals is indispensable to networked quantum applications, particularly those incorporating quantum memories. Lithium niobate nanophotonic devices have demonstrated favorable linear, nonlinear, and electro-optical properties to deliver this crucial function while offering superior efficiency, integrability, and scalability. Yet, their quantum noise level—a crucial metric for any single-photon-based application—has yet to be investigated. In this work, we report the first, to the best of our knowledge, study with the focus on telecom to near-visible conversion driven by a small detuned telecom pump for practical considerations in distributed quantum processing over fiber networks. Our results find the noise level to be on the order of 10 −<#comment/> 4 photons per time-frequency mode for high conversion, allowing faithful pulsed operations. Through carefully analyzing the origins of such noise and each’s dependence on the pump power and wavelength detuning, we have also identified a formula for noise suppression to 10 −<#comment/> 5 photons per mode. Our results assert a viable, low-cost, and modular approach to networked quantum processing and beyond using lithium niobate nanophotonics.  more » « less
Award ID(s):
1806523 1842680
PAR ID:
10253458
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of the Optical Society of America B
Volume:
38
Issue:
7
ISSN:
0740-3224; JOBPDE
Format(s):
Medium: X Size: Article No. 2172
Size(s):
Article No. 2172
Sponsoring Org:
National Science Foundation
More Like this
  1. Materials with strong second-order ( χ<#comment/> ( 2 ) ) optical nonlinearity, especially lithium niobate, play a critical role in building optical parametric oscillators (OPOs). However, chip-scale integration of low-loss χ<#comment/> ( 2 ) materials remains challenging and limits the threshold power of on-chip χ<#comment/> ( 2 ) OPO. Here we report an on-chip lithium niobate optical parametric oscillator at the telecom wavelengths using a quasi-phase-matched, high-quality microring resonator, whose threshold power ( ∼<#comment/> 30 µ<#comment/> W ) is 400 times lower than that in previous χ<#comment/> ( 2 ) integrated photonics platforms. An on-chip power conversion efficiency of 11% is obtained from pump to signal and idler fields at a pump power of 93 µW. The OPO wavelength tuning is achieved by varying the pump frequency and chip temperature. With the lowest power threshold among all on-chip OPOs demonstrated so far, as well as advantages including high conversion efficiency, flexibility in quasi-phase-matching, and device scalability, the thin-film lithium niobate OPO opens new opportunities for chip-based tunable classical and quantum light sources and provides a potential platform for realizing photonic neural networks. 
    more » « less
  2. Thin-film lithium-niobate-on-insulator (LNOI) has emerged as a superior integrated-photonics platform for linear, nonlinear, and electro-optics. Here we combine quasi-phase-matching, dispersion engineering, and tight mode confinement to realize nonlinear parametric processes with both high efficiency and wide wavelength tunability. On a millimeter-long, Z-cut LNOI waveguide, we demonstrate efficient ( 1900 ±<#comment/> 500 %<#comment/> W −<#comment/> 1 c m −<#comment/> 2 ) and highly tunable ( −<#comment/> 1.71 n m / K ) second-harmonic generation from 1530 to 1583 nm by type-0 quasi-phase-matching. Our technique is applicable to optical harmonic generation, quantum light sources, frequency conversion, and many other photonic information processes across visible to mid-IR spectral bands. 
    more » « less
  3. Optical nonlinearity plays a pivotal role in quantum information processing using photons, from heralded single-photon sources and coherent wavelength conversion to long-sought quantum repeaters. Despite the availability of strong dipole coupling to quantum emitters, achieving strong bulk optical nonlinearity is highly desirable. Here, we realize quantum nanophotonic integrated circuits in thin-film InGaP with, to our knowledge, a record-high ratio of 1.5 %<#comment/> between the single-photon nonlinear coupling rate ( g / 2 π<#comment/> = 11.2 M H z ) and cavity-photon loss rate. We demonstrate second-harmonic generation with an efficiency of 71200 ±<#comment/> 10300 %<#comment/> / W in the InGaP photonic circuit and photon-pair generation via degenerate spontaneous parametric downconversion with an ultrahigh rate exceeding 27.5 MHz/µW—an order of magnitude improvement of the state of the art—and a large coincidence-to-accidental ratio up to 1.4 ×<#comment/> 10 4 . Our work shows InGaP as a potentially transcending platform for quantum nonlinear optics and quantum information applications. 
    more » « less
  4. Here, we report χ<#comment/> ( 3 ) -based optical parametric oscillation (OPO) with widely separated signal–idler frequencies from crystalline aluminum nitride microrings pumped at 2 µ<#comment/> m . By tailoring the width of the microring, OPO reaching toward the telecom and mid-infrared bands with a frequency separation of 64.2 THz is achieved. While dispersion engineering through changing the microring width is capable of shifting the OPO sideband by ><#comment/> 9 T H z , the OPO frequency can also be agilely tuned in the ranges of 1 and 0.1 THz, respectively, by shifting the pump wavelength and controlling the chip’s temperature. At high pump powers, the OPO sidebands further evolve into localized frequency comb lines. Such large-frequency-shift OPO with flexible wavelength tunability will lead to enhanced chip-scale light sources. 
    more » « less
  5. We demonstrate a Bell state analyzer that operates directly on frequency mismatch. Based on electro-optic modulators and Fourier-transform pulse shapers, our quantum frequency processor design implements interleaved Hadamard gates in discrete frequency modes. Experimental tests on entangled-photon inputs reveal fidelities of ∼<#comment/> 98 %<#comment/> for discriminating between the | Ψ<#comment/> + ⟩<#comment/> and | Ψ<#comment/> −<#comment/> ⟩<#comment/> frequency-bin Bell states. Our approach resolves the tension between wavelength-multiplexed state transport and high-fidelity Bell state measurements, which typically require spectral indistinguishability. 
    more » « less