skip to main content


Title: Parallel Algorithm for Non-Monotone DR-Submodular Maximization
In this work, we give a new parallel algorithm for the problem of maximizing a non-monotone diminishing returns submodular function subject to a cardinality constraint. For any desired accuracy $\epsilon$, our algorithm achieves a $1/e - \epsilon$ approximation using $O(\log{n} \log(1/\epsilon) / \epsilon^3)$ parallel rounds of function evaluations. The approximation guarantee nearly matches the best approximation guarantee known for the problem in the sequential setting and the number of parallel rounds is nearly-optimal for any constant $\epsilon$. Previous algorithms achieve worse approximation guarantees using $\Omega(\log^2{n})$ parallel rounds. Our experimental evaluation suggests that our algorithm obtains solutions whose objective value nearly matches the value obtained by the state of the art sequential algorithms, and it outperforms previous parallel algorithms in number of parallel rounds, iterations, and solution quality.  more » « less
Award ID(s):
1718342 1750333 1908510
NSF-PAR ID:
10204873
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this work, we give a new parallel algorithm for the problem of maximizing a non-monotone diminishing returns submodular function subject to a cardinality constraint. For any desired accuracy $\epsilon$, our algorithm achieves a $1/e - \epsilon$ approximation using $O(\log{n} \log(1/\epsilon) / \epsilon^3)$ parallel rounds of function evaluations. The approximation guarantee nearly matches the best approximation guarantee known for the problem in the sequential setting and the number of parallel rounds is nearly-optimal for any constant $\epsilon$. Previous algorithms achieve worse approximation guarantees using $\Omega(\log^2{n})$ parallel rounds. Our experimental evaluation suggests that our algorithm obtains solutions whose objective value nearly matches the value obtained by the state of the art sequential algorithms, and it outperforms previous parallel algorithms in number of parallel rounds, iterations, and solution quality. 
    more » « less
  2. null (Ed.)
    In this work, we give a new parallel algorithm for the problem of maximizing a non-monotone diminishing returns submodular function subject to a cardinality constraint. For any desired accuracy epsilon, our algorithm achieves a 1/e−epsilon approximation using O(logn*log(1/epsilon)/epsilon^3) parallel rounds of function evaluations. The approximation guarantee nearly matches the best approximation guarantee known for the problem in the sequential setting and the number of parallel rounds is nearly-optimal for any constant epsilon. Previous algorithms achieve worse approximation guarantees using Ω(log^2 n) parallel rounds. Our experimental evaluation suggests that our algorithm obtains solutions whose objective value nearly matches the value obtained by the state of the art sequential algorithms, and it outperforms previous parallel algorithms in number of parallel rounds, iterations, and solution quality. 
    more » « less
  3. In this paper, we study the tradeoff between the approximation guarantee and adaptivity for the problem of maximizing a monotone submodular function subject to a cardinality constraint. The adaptivity of an algorithm is the number of sequential rounds of queries it makes to the evaluation oracle of the function, where in every round the algorithm is allowed to make polynomially-many parallel queries. Adaptivity is an important consideration in settings where the objective function is estimated using samples and in applications where adaptivity is the main running time bottleneck. Previous algorithms achieving a nearly-optimal $1 - 1/e - \epsilon$ approximation require $\Omega(n)$ rounds of adaptivity. In this work, we give the first algorithm that achieves a $1 - 1/e - \epsilon$ approximation using $O(\ln{n} / \epsilon^2)$ rounds of adaptivity. The number of function evaluations and additional running time of the algorithm are $O(n \; \mathrm{poly}(\log{n}, 1/\epsilon))$. 
    more » « less
  4. We consider the problem of maximizing the multilinear extension of a submodular function subject a single matroid constraint or multiple packing constraints with a small number of adaptive rounds of evaluation queries. We obtain the first algorithms with low adaptivity for submodular maximization with a matroid constraint. Our algorithms achieve a $1-1/e-\epsilon$ approximation for monotone functions and a $1/e-\epsilon$ approximation for non-monotone functions, which nearly matches the best guarantees known in the fully adaptive setting. The number of rounds of adaptivity is $O(\log^2{n}/\epsilon^3)$, which is an exponential speedup over the existing algorithms. We obtain the first parallel algorithm for non-monotone submodular maximization subject to packing constraints. Our algorithm achieves a $1/e-\epsilon$ approximation using $O(\log(n/\epsilon) \log(1/\epsilon) \log(n+m)/ \epsilon^2)$ parallel rounds, which is again an exponential speedup in parallel time over the existing algorithms. For monotone functions, we obtain a $1-1/e-\epsilon$ approximation in $O(\log(n/\epsilon)\log(m)/\epsilon^2)$ parallel rounds. The number of parallel rounds of our algorithm matches that of the state of the art algorithm for solving packing LPs with a linear objective (Mahoney et al., 2016). Our results apply more generally to the problem of maximizing a diminishing returns submodular (DR-submodular) function. 
    more » « less
  5. null (Ed.)
    We consider the classical Minimum Balanced Cut problem: given a graph $G$, compute a partition of its vertices into two subsets of roughly equal volume, while minimizing the number of edges connecting the subsets. We present the first {\em deterministic, almost-linear time} approximation algorithm for this problem. Specifically, our algorithm, given an $n$-vertex $m$-edge graph $G$ and any parameter $1\leq r\leq O(\log n)$, computes a $(\log m)^{r^2}$-approximation for Minimum Balanced Cut on $G$, in time $O\left ( m^{1+O(1/r)+o(1)}\cdot (\log m)^{O(r^2)}\right )$. In particular, we obtain a $(\log m)^{1/\epsilon}$-approximation in time $m^{1+O(1/\sqrt{\epsilon})}$ for any constant $\epsilon$, and a $(\log m)^{f(m)}$-approximation in time $m^{1+o(1)}$, for any slowly growing function $m$. We obtain deterministic algorithms with similar guarantees for the Sparsest Cut and the Lowest-Conductance Cut problems. Our algorithm for the Minimum Balanced Cut problem in fact provides a stronger guarantee: it either returns a balanced cut whose value is close to a given target value, or it certifies that such a cut does not exist by exhibiting a large subgraph of $G$ that has high conductance. We use this algorithm to obtain deterministic algorithms for dynamic connectivity and minimum spanning forest, whose worst-case update time on an $n$-vertex graph is $n^{o(1)}$, thus resolving a major open problem in the area of dynamic graph algorithms. Our work also implies deterministic algorithms for a host of additional problems, whose time complexities match, up to subpolynomial in $n$ factors, those of known randomized algorithms. The implications include almost-linear time deterministic algorithms for solving Laplacian systems and for approximating maximum flows in undirected graphs. 
    more » « less