skip to main content


Search for: All records

Award ID contains: 1908510

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we revisit the generalization error of stochastic mirror descent for quadratically bounded losses studied in Telgarsky (2022). Quadratically bounded losses is a broad class of loss functions, capturing both Lipschitz and smooth functions, for both regression and classification problems. We study the high probability generalization for this class of losses on linear predictors in both realizable and non-realizable cases when the data are sampled IID or from a Markov chain. The prior work relies on an intricate coupling argument between the iterates of the original problem and those projected onto a bounded domain. This approach enables blackbox application of concentration inequalities, but also leads to suboptimal guarantees due in part to the use of a union bound across all iterations. In this work, we depart significantly from the prior work of Telgarsky (2022), and introduce a novel approach for establishing high probability generalization guarantees. In contrast to the prior work, our work directly analyzes the moment generating function of a novel supermartingale sequence and leverages the structure of stochastic mirror descent. As a result, we obtain improved bounds in all aforementioned settings. Specifically, in the realizable case and non-realizable case with light-tailed sub-Gaussian data, we improve the bounds by a $\log T$ factor, matching the correct rates of $1/T$ and $1/\sqrt{T}$, respectively. In the more challenging case of heavy-tailed polynomial data, we improve the existing bound by a $\mathrm{poly}\ T$ factor. 
    more » « less
    Free, publicly-accessible full text available December 10, 2024
  2. In this work, we study the convergence in high probability of clipped gradient methods when the noise distribution has heavy tails, i.e., with bounded $p$th moments, for some $1< p \leq 2$. Prior works in this setting follow the same recipe of using concentration inequalities and an inductive argument with union bound to bound the iterates across all iterations. This method results in an increase in the failure probability by a factor of $T$, where $T$ is the number of iterations. We instead propose a new analysis approach based on bounding the moment generating function of a well chosen supermartingale sequence. We improve the dependency on $T$ in the convergence guarantee for a wide range of algorithms with clipped gradients, including stochastic (accelerated) mirror descent for convex objectives and stochastic gradient descent for nonconvex objectives. Our high probability bounds achieve the optimal convergence rates and match the best currently known in-expectation bounds. Our approach naturally allows the algorithms to use time-varying step sizes and clipping parameters when the time horizon is unknown, which appears difficult or even impossible using existing techniques from prior works. Furthermore, we show that in the case of clipped stochastic mirror descent, several problem constants, including the initial distance to the optimum, are not required when setting step sizes and clipping parameters. 
    more » « less
    Free, publicly-accessible full text available December 10, 2024
  3. Display Ads and the generalized assignment problem are two well-studied online packing problems with important applications in ad allocation and other areas. In both problems, ad impressions arrive online and have to be allocated immediately to budget-constrained advertisers. Worst-case algorithms that achieve the ideal competitive ratio are known for both problems, but might act overly conservative given the predictable and usually tame nature of real-world input. Given this discrepancy, we develop an algorithm for both problems that incorporate machine-learned predictions and can thus improve the performance beyond the worst-case. Our algorithm is based on the work of Feldman et al. (2009) and similar in nature to Mahdian et al. (2007) who were the first to develop a learning-augmented algorithm for the related, but more structured Ad Words problem. We use a novel analysis to show that our algorithm is able to capitalize on a good prediction, while being robust against poor predictions. We experimentally evaluate our algorithm on synthetic and real-world data on a wide range of predictions. Our algorithm is consistently outperforming the worst-case algorithm without predictions. 
    more » « less
    Free, publicly-accessible full text available December 10, 2024
  4. In this work, we describe a generic approach to show convergence with high probability for both stochastic convex and non-convex optimization with sub-Gaussian noise. In previous works for convex optimization, either the convergence is only in expectation or the bound depends on the diameter of the domain. Instead, we show high probability convergence with bounds depending on the initial distance to the optimal solution. The algorithms use step sizes analogous to the standard settings and are universal to Lipschitz functions, smooth functions, and their linear combinations. The method can be applied to the non-convex case. We demonstrate an $O((1+\sigma^{2}\log(1/\delta))/T+\sigma/\sqrt{T})$ convergence rate when the number of iterations $T$ is known and an $O((1+\sigma^{2}\log(T/\delta))/\sqrt{T})$ convergence rate when $T$ is unknown for SGD, where $1-\delta$ is the desired success probability. These bounds improve over existing bounds in the literature. We also revisit AdaGrad-Norm (Ward et al., 2019) and show a new analysis to obtain a high probability bound that does not require the bounded gradient assumption made in previous works. The full version of our paper contains results for the standard per-coordinate AdaGrad. 
    more » « less
    Free, publicly-accessible full text available July 23, 2024
  5. Existing analysis of AdaGrad and other adaptive methods for smooth convex optimization is typically for functions with bounded domain diameter. In unconstrained problems, previous works guarantee an asymptotic convergence rate without an explicit constant factor that holds true for the entire function class. Furthermore, in the stochastic setting, only a modified version of AdaGrad, different from the one commonly used in practice, in which the latest gradient is not used to update the stepsize, has been analyzed. Our paper aims at bridging these gaps and developing a deeper understanding of AdaGrad and its variants in the standard setting of smooth convex functions as well as the more general setting of quasar convex functions. First, we demonstrate new techniques to explicitly bound the convergence rate of the vanilla AdaGrad for unconstrained problems in both deterministic and stochastic settings. Second, we propose a variant of AdaGrad for which we can show the convergence of the last iterate, instead of the average iterate. Finally, we give new accelerated adaptive algorithms and their convergence guarantee in the deterministic setting with explicit dependency on the problem parameters, improving upon the asymptotic rate shown in previous works. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024