skip to main content


Title: Model-based assessment of the impact of driver-assist vehicles using kinetic theory
Abstract In this paper, we consider a kinetic description of follow-the-leader traffic models, which we use to study the effect of vehicle-wise driver-assist control strategies at various scales, from that of the local traffic up to that of the macroscopic stream of vehicles. We provide theoretical evidence of the fact that some typical control strategies, such as the alignment of the speeds and the optimisation of the time headways, impact on the local traffic features (for instance, the speed and headway dispersion responsible for local traffic instabilities) but have virtually no effect on the observable macroscopic traffic trends (for instance, the flux/throughput of vehicles). This unobvious conclusion, which is in very nice agreement with recent field studies on autonomous vehicles, suggests that the kinetic approach may be a valid tool for an organic multiscale investigation and possibly the design of driver-assist algorithms.  more » « less
Award ID(s):
1837481
NSF-PAR ID:
10204903
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Zeitschrift für angewandte Mathematik und Physik
Volume:
71
Issue:
5
ISSN:
0044-2275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Self-driving vehicles are the latest innovation in improving personal mobility and road safety by removing arguably error-prone humans from driving-related tasks. Such advances can prove especially beneficial for people who are blind or have low vision who cannot legally operate conventional motor vehicles. Missing from the related literature, we argue, are studies that describe strategies for vehicle design for these persons. We present a case study of the participatory design of a prototype for a self-driving vehicle human-machine interface (HMI) for a graduate-level course on inclusive design and accessible technology. We reflect on the process of working alongside a co-designer, a person with a visual disability, to identify user needs, define design ideas, and produce a low-fidelity prototype for the HMI. This paper may benefit researchers interested in using a similar approach for designing accessible autonomous vehicle technology. INTRODUCTION The rise of autonomous vehicles (AVs) may prove to be one of the most significant innovations in personal mobility of the past century. Advances in automated vehicle technology and advanced driver assistance systems (ADAS) specifically, may have a significant impact on road safety and a reduction in vehicle accidents (Brinkley et al., 2017; Dearen, 2018). According to the Department of Transportation (DoT), automated vehicles could help reduce road accidents caused by human error by as much as 94% (SAE International, n.d.). In addition to reducing traffic accidents and saving lives and property, autonomous vehicles may also prove to be of significant value to persons who cannot otherwise operate conventional motor vehicles. AVs may provide the necessary mobility, for instance, to help create new employment opportunities for nearly 40 million Americans with disabilities (Claypool et al., 2017; Guiding Eyes for the Blind, 2019), for instance. Advocates for the visually impaired specifically have expressed how “transformative” this technology can be for those who are blind or have significant low vision (Winter, 2015); persons who cannot otherwise legally operate a motor vehicle. While autonomous vehicles have the potential to break down transportation 
    more » « less
  2. Driver assist features such as adaptive cruise control (ACC) and highway assistants are becoming increasingly prevalent on commercially available vehicles. These systems are typically designed for safety and rider comfort. However, these systems are often not designed with the quality of the overall traffic flow in mind. For such a system to be beneficial to the traffic flow, it must be string stable and minimize the inter-vehicle spacing to maximize throughput, while still being safe. We propose a methodology to select autonomous driving system parameters that are both safe and string stable using the existing control framework already implemented on commercially available ACC vehicles. Optimal parameter values are selected via model-based optimization for an example highway assistant controller with path planning. 
    more » « less
  3. Recent studies have leveraged the existence of network macroscopic fundamental diagrams (MFD) to develop regional control strategies for urban traffic networks. Existing MFD-based control strategies focus on vehicle movement within and across regions of an urban network and do not consider how freeway traffic can be controlled to improve overall traffic operations in mixed freeway and urban networks. The purpose of this study is to develop a coordinated traffic management scheme that simultaneously implements perimeter flow control on an urban network and variable speed limits (VSL) on a freeway to reduce total travel time in such a mixed network. By slowing down vehicles traveling along the freeway, VSL can effectively meter traffic exiting the freeway into the urban network. This can be particularly useful since freeways often have large storage capacities and vehicles accumulating on freeways might be less disruptive to overall system operations than on urban streets. VSL can also be used to change where freeway vehicles enter the urban network to benefit the entire system. The combined control strategy is implemented in a model predictive control framework with several realistic constraints, such as gradual reductions in freeway speed limit. Numerical tests suggest that the combined implementation of VSL and perimeter metering control can improve traffic operations compared with perimeter metering alone. 
    more » « less
  4. null (Ed.)
    Network macroscopic fundamental diagrams (MFDs) have recently been shown to exist in real-world urban traffic networks. The existence of an MFD facilitates the modeling of urban traffic network dynamics at a regional level, which can be used to identify and refine large-scale network-wide control strategies. To be useful, MFD-based modeling frameworks require an estimate of the functional form of a network’s MFD. Analytical methods have been proposed to estimate a network’s MFD by abstracting the network as a single ring-road or corridor and modeling the flow–density relationship on that simplified element. However, these existing methods cannot account for the impact of turning traffic, as only a single corridor is considered. This paper proposes a method to estimate a network’s MFD when vehicles are allowed to turn into or out of a corridor. A two-ring abstraction is first used to analyze how turning will affect vehicle travel in a more general network, and then the model is further approximated using a single ring-road or corridor. This approximation is useful as it facilitates the application of existing variational theory-based methods (the stochastic method of cuts) to estimate the flow–density relationship on the corridor, while accounting for the stochastic nature of turning. Results of the approximation compared with a more realistic simulation that includes features that cannot be captured using variational theory—such as internal origins and destinations—suggest that this approximation works to estimate a network’s MFD when turning traffic is present. 
    more » « less
  5. The key concept for safe and efficient traffic management for Unmanned Aircraft Systems (UAS) is the notion of operation volume (OV). An OV is a 4-dimensional block of airspace and time, which can express an aircraft’s intent, and can be used for planning, de-confliction, and traffic management. While there are several high-level simulators for UAS Traffic Management (UTM), we are lacking a frame- work for creating, manipulating, and reasoning about OVs for heterogeneous air vehicles. In this paper, we address this and present SkyTrakx—a software toolkit for simulation and verification of UTM scenarios based on OVs. First, we illustrate a use case of SkyTrakx by presenting a specific air traffic coordination protocol. This protocol communicates OVs between participating aircraft and an airspace manager for traffic routing. We show how existing formal verification tools, Dafny and Dione, can assist in automatically checking key properties of the protocol. Second, we show how the OVs can be computed for heterogeneous air vehicles like quadcopters and fixed-wing aircraft using another verification technique, namely reachability analysis. Finally, we show that SkyTrakx can be used to simulate complex scenarios involving heterogeneous vehicles, for testing and performance evaluation in terms of workload and response delays analysis. Our experiments delineate the trade-off between performance and workload across different strategies for generating OVs. 
    more » « less