skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on May 1, 2025

Title: Overtaking-Enabled Eco-Approach Control at Signalized Intersections for Connected and Automated Vehicles
Preceding vehicles typically dominate the movement of following vehicles in traffic systems, thereby significantly influencing the efficacy of eco-driving control that concentrates on vehicle speed optimization. To potentially mitigate the negative effect of preceding vehicles on eco-driving control at the signalized intersection, this study proposes an overtaking-enabled eco-approach control (OEAC) strategy. It combines driving lane planning and speed optimization for connected and automated vehicles to relax the first-in-first-out queuing policy at the signalized intersection, minimizing the host vehicle’s energy consumption and travel delay. The OEAC adopts a two-stage receding horizon control framework to derive optimal driving trajectories for adapting to dynamic traffic conditions. In the first stage, the driving lane optimization problem is formulated as a Markov decision process and solved using dynamic programming, which takes into account the uncertain disturbance from preceding vehicles. In the second stage, the vehicle’s speed trajectory with the minimal driving cost is optimized rapidly using Pontryagin’s minimum principle to obtain the closed-form analytical optimal solution. Extensive simulations are conducted to evaluate the effectiveness of the OEAC. The results show that the OEAC is excellent in driving cost reduction over constant speed and regular eco-approach and departure strategies in various traffic scenarios, with an average improvement of 20.91% and 5.62%, respectively.  more » « less
Award ID(s):
2152258
PAR ID:
10510621
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Intelligent Transportation Systems
Volume:
25
Issue:
5
ISSN:
1524-9050
Page Range / eLocation ID:
4527 to 4539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    For energy-efficient Connected and Automated Vehicle (CAV) Eco-driving control on signalized arterials under uncertain traffic conditions, this paper explicitly considers traffic control devices (e.g., road markings, traffic signs, and traffic signals) and road geometry (e.g., road shapes, road boundaries, and road grades) constraints in a data-driven optimization-based Model Predictive Control (MPC) modeling framework. This modeling framework uses real-time vehicle driving and traffic signal data via Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. In the MPC-based control model, this paper mathematically formulates location-based traffic control devices and road geometry constraints using the geographic information from High-Definition (HD) maps. The location-based traffic control devices and road geometry constraints have the potential to improve the safety, energy, efficiency, driving comfort, and robustness of connected and automated driving on real roads by considering interrupted flow facility locations and road geometry in the formulation. We predict a set of uncertain driving states for the preceding vehicles through an online learning-based driving dynamics prediction model. We then solve a constrained finite-horizon optimal control problem with the predicted driving states to obtain a set of Eco-driving references for the controlled vehicle. To obtain the optimal acceleration or deceleration commands for the controlled vehicle with the set of Eco-driving references, we formulate a Distributionally Robust Stochastic Optimization (DRSO) model (i.e., a special case of data-driven optimization models under moment bounds) with Distributionally Robust Chance Constraints (DRCC) with location-based traffic control devices and road geometry constraints. We design experiments to demonstrate the proposed model under different traffic conditions using real-world connected vehicle trajectory data and Signal Phasing and Timing (SPaT) data on a coordinated arterial with six actuated intersections on Fuller Road in Ann Arbor, Michigan from the Safety Pilot Model Deployment (SPMD) project. 
    more » « less
  2. In the urban corridor with a mixed traffic composition of connected and automated vehicles (CAVs) alongside human-driven vehicles (HDVs), vehicle operations are intricately influenced by both individual driving behaviors and the presence of signalized intersections. Therefore, the development of a coordinated control strategy that effectively accommodates these dual factors becomes imperative to enhance the overall quality of traffic flow. This study proposes a bi-level structure crafted to decouple the joint effects of the vehicular driving behaviors and corridor signal offsets setting. The objective of this structure is to optimize both the average travel time (ATT) and fuel consumption (AFC). At the lower-level, three types of car-following models while considering driving modes are presented to illustrate the desired driving behaviors of HDVs and CAVs. Moreover, a trigonometry function method combined with a rolling horizon scheme is proposed to generate the eco-trajectory of CAVs in the mixed traffic flow. At the upper-level, a multi-objective optimization model for corridor signal offsets is formulated to minimize ATT and AFC based on the lower-level simulation outputs. Additionally, a revised Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is adopted to identify the set of Pareto-optimal solutions for corridor signal offsets under different CAV penetration rates (CAV PRs). Numerical experiments are conducted within a corridor that encompasses three signalized intersections. The performance of our proposed eco-driving strategy is validated in comparison to the intelligent driver model (IDM) and green light optimal speed advisory (GLOSA) algorithm in single-vehicle simulation. Results show that our proposed strategy yields reduced travel time and fuel consumption to both IDM and GLOSA. Subsequently, the effectiveness of our proposed coordinated control strategy is validated across various CAV PRs. Results indicated that the optimal AFC can be reduced by 4.1%–32.2% with CAV PRs varying from 0.2 to 1, and the optimal ATT can be saved by 2.3% maximum. Furthermore, sensitivity analysis is conducted to evaluate the impact of CAV PRs and V/C ratios on the optimal ATT and AFC. 
    more » « less
  3. Even though extensive studies have developed various eco-driving strategies for vehicle platoon to travel on urban roads with traffic signals, most of them focus on vehicle-level trajectory planning or speed advisory rather than real-time platoon-level closed-loop control. In addition, majority of existing efforts neglect the traffic and vehicle dynamic uncertainties to avoid the modeling and solution complexity. To make up these research gaps, this study develops a system optimal vehicle platooning control for eco-driving (SO-ED), which can guide a mixed flow platoon to smoothly run on the urban roads and pass the signalized intersections without sudden deceleration or red idling. The SO-ED is mathematically implemented by a hybrid model predictive control (MPC) system, including three MPC controllers and an MINLP platoon splitting switching signal. Based on the features of the system, this study uses active set method to solve the large-scale MPC controllers in real time. The numerical experiments validate the merits of the proposed SO-ED in smoothing the traffic flow and reducing energy consumption and emission at urban signalized intersections. 
    more » « less
  4. Connected and automated vehicles (CAVs) extend urban traffic control from temporal to spatiotemporal by enabling the control of CAV trajectories. Most of the existing studies on CAV trajectory planning only consider longitudinal behaviors (i.e., in-lane driving), or assume that the lane changing can be done instantaneously. The resultant CAV trajectories are not realistic and cannot be executed at the vehicle level. The aim of this paper is to propose a full trajectory planning model that considers both in-lane driving and lane changing maneuvers. The trajectory generation problem is modeled as an optimization problem and the cost function considers multiple driving features including safety, efficiency, and comfort. Ten features are selected in the cost function to capture both in-lane driving and lane changing behaviors. One major challenge in generating a trajectory that reflects certain driving policies is to balance the weights of different features in the cost function. To address this challenge, it is proposed to optimize the weights of the cost function by imitation learning. Maximum entropy inverse reinforcement learning is applied to obtain the optimal weight for each feature and then CAV trajectories are generated with the learned weights. Experiments using the Next Generation Simulation (NGSIM) dataset show that the generated trajectory is very close to the original trajectory with regard to the Euclidean distance displacement, with a mean average error of less than 1 m. Meanwhile, the generated trajectories can maintain safety gaps with surrounding vehicles and have comparable fuel consumption.

     
    more » « less
  5. Recent technological advancements in the automotive and transportation industry established a firm foundation for development and implementation of various connected and automated vehicle solutions around the globe. Wireless communication technologies such as the dedicated short-range communication protocol are enabling information exchange between vehicles and infrastructure. This research paper introduces an intersection management strategy for a corridor with automated vehicles utilizing vehicular trajectory-driven optimization method. Trajectory-Driven Optimization for Automated Driving provides an optimal trajectory for automated vehicles based on current vehicle position, prevailing traffic, and signal status on the corridor. All inputs are used by the control algorithm to provide optimal trajectories for automated vehicles, resulting in the reduction of vehicle delay along the signalized corridor with fixed-time signal control. The concept evaluation through microsimulation reveals that, even with low market penetration (i.e., less than 10%), the technology reduces overall travel time of the corridor by 2%. Further increase in market penetration produces travel time and fuel consumption reductions of up to 19.5% and 22.5%, respectively. 
    more » « less