skip to main content


Title: Impact of fault damage on eastern Tibet topography
Tectonic deformation can influence spatiotemporal patterns of erosion by changing both base level and the mechanical state of bedrock. Although base-level change and the resulting erosion are well understood, the impact of tectonic damage on bedrock erodibility has rarely been quantified. Eastern Tibet, a tectonically active region with diverse lithologies and multiple active fault zones, provides a suitable field site to understand how tectonic deformation controls erosion and topography. In this study, we quantified erosion coefficients using the relationship between millennial erosion rates and the corresponding channel steepness. Our work shows a twofold increase in erosion coefficients between basins within 15 km of major faults compared to those beyond 15 km, suggesting that tectonic deformation through seismic shaking and rock damage significantly affects eastern Tibet erosion and topography. This work demonstrates a field-based, quantitative relationship between rock erodibility and fault damage, which has important implications for improving landscape evolution models.  more » « less
Award ID(s):
1945431 1728145
NSF-PAR ID:
10204941
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Geology
ISSN:
0091-7613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Valla, Pierre (Ed.)
    Abstract Over the past few decades, tectonic geomorphology has been widely implemented to constrain spatial and temporal patterns of fault slip, especially where existing geologic or geodetic data are poor. We apply this practice along the eastern margin of Bull Mountain, Southwest Montana, where 15 transient channels are eroding into the flat, upstream relict landscape in response to an ongoing period of increased base level fall along the Western North Boulder fault. We aim to improve constraints on the spatial and temporal slip rates across the Western North Boulder fault zone by applying channel morphometrics, cosmogenic erosion rates, bedrock characteristics, and calibrated reproductions of the modern river profiles using a 1-dimensional stream power incision model that undergoes a change in the rate of base level fall. We perform over 104 base level fall simulations to explore a wide range of fault slip dynamics and stream power parameters. Our best fit simulations suggest that the Western North Boulder fault started as individual fault segments along the middle to southern regions of Bull Mountain that nucleated around 6.2 to 2.5 Ma, respectively. This was followed by the nucleation of fault segments in the northern region around 1.5 to 0.4 Ma. We recreate the evolution of the Western North Boulder fault to show that through time, these individual segments propagate at the fault tips and link together to span over 40 km, with a maximum slip of 462 m in the central portion of the fault. Fault slip rates range from 0.02 to 0.45 mm/yr along strike and are consistent with estimates for other active faults in the region. We find that the timing of fault initiation coincides well with the migration of the Yellowstone hotspot across the nearby Idaho-Montana border and thus attribute the initiation of extension to the crustal bulge from the migrating hotspot. Overall, we provide the first quantitative constraints on fault initiation and evolution of the Western North Boulder fault, perhaps the farthest north basin in the Northern Basin and Range province that such constraints exist. We show that river profiles are powerful tools for documenting the spatial and temporal patterns of normal fault evolution, especially where other geologic/geodetic methods are limited, proving to be a vital tool for accurate tectonic hazard assessments. 
    more » « less
  2. The Tibetan Plateau, the largest highland on Earth, formed due to the collision of India-Asia over the past 50−60 m.y., and the evolution of the Tibetan Plateau impacts our knowledge of continental tectonics. Examination of the northernmost margin of the Tibetan Plateau is key to unravelling the deformation mechanisms acting in northern Tibet. The left-slip Altyn Tagh fault system defines the northwest margin of the Tibetan Plateau, separating the Western and Eastern Kunlun Ranges in the southwest. Both Cenozoic and pre-Cenozoic crustal deformation events at this junction between the Altyn Tagh and Kunlun Ranges were responsible for the construction of northwestern Tibet, yet the relative contribution of each phase remains unconstrained. The western domain of the Eastern Kunlun Range is marked by active NE-trending, left-slip deformation of the Altyn Tagh fault and an E-striking Cenozoic thrust system developed in response India-Asia collision. To better constrain the Paleozoic Altyn Tagh and Kunlun orogens and establish the Cenozoic structural framework, we conducted an integrated investigation involving detailed geologic mapping (∼1:50,000 scale), U-Pb zircon geochronology, and synthesis of existing data sets across northwestern Tibet. Our new zircon analyses from Paleoproterozoic−Cretaceous strata constrain stratigraphic age and sediment provenance and highlight Proterozoic−Paleozoic arc activity. We propose a tectonic model for the Neoproterozoic−Mesozoic evolution of northwestern Tibet wherein restoration of an ∼56-km-long balanced cross section across the western domain of the Eastern Kunlun suggests that Cenozoic minimum shortening strain was ∼30% (∼24 km shortening). Field evidence suggests this shortening commenced after ca. 25−20 Ma, which yields an average long-term shortening rate of 1.2−0.9 mm yr−1 and strain rates of 4.7 × 10−16 s−1 to 2.3 × 10−16 s−1. Geometric considerations demonstrate that this contractional deformation did not significantly contribute to left-slip offset on the Altyn Tagh fault, which has ∼10 mm/yr slip rates. 
    more » « less
  3. null (Ed.)
    The Indian (southwest) summer monsoon is one of the most intense climatic phenomena on Earth. Its long-term development has been linked to the growth of high topography in South and Central Asia. The Indian continental margin, adjoining the Arabian Sea, offers a unique opportunity to investigate tectonic–climatic interactions and the net impact of these processes on weathering and erosion of the western Himalaya. During International Ocean Discovery Program Expedition 355, two sites (U1456 and U1457) were drilled in Laxmi Basin in the eastern Arabian Sea to document the coevolution of mountain building, weathering, erosion, and climate over a range of timescales. In addition, recovering basement from the eastern Arabian Sea provides constraints on the early rifting history of the western continental margin of India with special emphasis on continental breakup between India and the Seychelles and its relationship to the plume-related volcanism of the Deccan Plateau. Drilling and coring operations during Expedition 355 recovered sediment from Sites U1456 and U1457 in the Laxmi Basin, penetrating 1109.4 and 1108.6 m below seafloor (mbsf), respectively. Drilling reached sediment dated to 13.5–17.7 Ma (late early to early middle Miocene) at Site U1456, although with a large hiatus between the lowermost sediment and overlying deposits dated to <10.9 Ma. At Site U1457, a much longer hiatus occurs near the base of the cored section, spanning from 10.9 to ~62 Ma. At both sites, hiatuses span ~8.2–9.2 and ~3.6–5.6 Ma, with a possible condensed section spanning ~2.0–2.6 Ma, although the total duration for each hiatus is slightly different between the two sites. A major submarine fan draining the western Himalaya and Karakoram must have been supplying sediment to the eastern Arabian Sea since at least ~17 Ma. Sand mineral assemblages indicate that the Greater Himalayan Crystalline Sequence was fully exposed to the surface by this time. Most of the recovered sediment appears to be derived from the Indus River and includes minerals that are unique to the Indus Suture Zone, in particular glaucophane and hypersthene, most likely originating from the structural base of the Kohistan arc. Pliocene sandy intervals at Site U1456 were deposited in lower fan “sheet lobe” settings, with intervals of basin plain turbidites separated by hemipelagic muddy sections deposited during the Miocene. Site U1457 is more distal in facies, reflecting its more marginal setting. No major active lobe appears to have affected the Laxmi Basin since the Middle Pleistocene (~1.2 Ma). We succeeded in recovering sections spanning the 8 Ma climatic transition, when monsoon intensity is believed to have changed strongly, although the nature of this change awaits postcruise analysis. We also recovered sediment from a large mass transport deposit measuring ~330 and ~190 m thick at Sites U1456 and U1457, respectively. This section includes an upper sequence of slump-folded muddy and silty rocks, as well as underlying calcarenites and limestone breccias, together with smaller amounts of volcanic clasts, all of which are likely derived from the western Indian continental shelf. Identification of similar facies on the regional seismic lines in Laxmi Basin suggests that these deposits form parts of one of the world’s largest mass transport deposits. Coring of igneous basement was successful at Site U1457. Recovery of massive basalt and associated volcaniclastic sediment at this site should address the key questions related to rifting and volcanism associated with formation of Laxmi Basin. Geochemical analysis is required to understand the petrogenesis and thus the tectonic setting of volcanism that will reveal whether it is oceanic basalt or volcanic rock contaminated by underlying continental crust or continental flood basalt. However, the fact that the lavas are massive and have few vesicles implies water depths of eruption likely deeper than 2000 m. This precludes opening of the basin in the presence of a major mantle thermal anomaly, such as that associated with the Deccan Large Igneous Province. Other observations made at the two sites during Expedition 355 provide vital constraints on the rift history of this margin. Heat flow measurements at the two drill sites were calculated to be ~57 and ~60 mW/m2. Such heat flow values are compatible with those observed in average oceanic crust of 63–84 Ma age, as well as with the presence of highly extended continental crust. Postcruise analyses of the more than ~1722 m of core will provide further information about the nature of tectonic–climatic interactions in this global type area for such studies. 
    more » « less
  4. Abstract

    How tectonic forcing, expressed as base level change, is encoded in the stratigraphic and geomorphic records of coupled source‐to‐sink systems remains uncertain. Using sedimentological, geochronological and geomorphic approaches, we describe the relationship between transient topographic change and sediment deposition for a low‐storage system forced by rapid rock uplift. We present five new luminescence ages and two terrestrial cosmogenic nuclide paleo‐erosion rates for the late Pleistocene Pagliara fan‐delta complex and we model corresponding base level fall history and erosion of the source catchment located on the Ionian flank of the Peloritani Mountains (NE‐Sicily, Italy). The Pagliara delta complex is part of the broader Messina Gravel‐and‐Sands lithostratigraphic unit that outcrops along the Peloritani coastal belt as extensional basins have been recently inverted by both normal faults and regional uplift at the Messina Straits. The deltas exposed at the mouth of the Pagliara River have constructional tops at ca. 300 m a.s.l. and onlap steeply east‐dipping bedrock at the coast to thickness between ca. 100 and 200 m. Five infrared‐stimulated luminescence (IRSL) ages collected from the delta range in age from ca. 327 to 208 ka and indicate a vertical long‐term sediment accumulation rate as rapid as ca. 2.2 cm/yr during MIS 7. Two cosmogenic10Be concentrations measured in samples of delta sediment indicate paleo‐erosion rates during MIS 8–7 near or slightly higher than the modern rates of ca. 1 mm/yr. Linear inversion of Pagliara fluvial topography indicates an unsteady base level fall history in phase with eustasy that is superimposed on a longer, tectonically driven trend that doubled in rate from ca. 0.95 to 1.8 mm/yr in the past 150 ky. The combination of footwall uplift rate and eustasy determines the accommodation space history to trap the fan‐deltas at the Peloritani coast in hanging wall basins, which are now inverted, uplifted and exposed hundreds of metres above the sea level.

     
    more » « less
  5. Abstract. Here we examine the landscape of New Zealand'sMarlborough Fault System (MFS), where the Australian and Pacific plates obliquelycollide, in order to study landscape evolution and the controls on fluvialpatterns at a long-lived plate boundary. We present maps of drainageanomalies and channel steepness, as well as an analysis of the plan-vieworientations of rivers and faults, and we find abundant evidence ofstructurally controlled drainage that we relate to a history of drainagecapture and rearrangement in response to mountain-building and strike-slipfaulting. Despite clear evidence of recent rearrangement of the western MFSdrainage network, rivers in this region still flow parallel to older faults,rather than along orthogonal traces of younger, active strike-slip faults.Such drainage patterns emphasize the importance of river entrenchment,showing that once rivers establish themselves along a structural grain,their capture or avulsion becomes difficult, even when exposed to newweakening and tectonic strain. Continued flow along older faults may alsoindicate that the younger faults have not yet generated a fault damage zonewith the material weakening needed to focus erosion and reorient rivers.Channel steepness is highest in the eastern MFS, in a zone centered on theKaikōura ranges, including within the low-elevation valleys of main stemrivers and at tributaries near the coast. This pattern is consistent with anincrease in rock uplift rate toward a subduction front that is locked on itssouthern end. Based on these results and a wealth of previous geologicstudies, we propose two broad stages of landscape evolution over the last 25 million years of orogenesis. In the eastern MFS, Miocene folding above blindthrust faults generated prominent mountain peaks and formed major transverserivers early in the plate collision history. A transition to Pliocenedextral strike-slip faulting and widespread uplift led to cycles of riverchannel offset, deflection and capture of tributaries draining across activefaults, and headward erosion and captures by major transverse rivers withinthe western MFS. We predict a similar landscape will evolve south of theHope Fault, as the locus of plate boundary deformation migrates southwardinto this region with time. 
    more » « less