skip to main content

Title: Impact of fault damage on eastern Tibet topography
Tectonic deformation can influence spatiotemporal patterns of erosion by changing both base level and the mechanical state of bedrock. Although base-level change and the resulting erosion are well understood, the impact of tectonic damage on bedrock erodibility has rarely been quantified. Eastern Tibet, a tectonically active region with diverse lithologies and multiple active fault zones, provides a suitable field site to understand how tectonic deformation controls erosion and topography. In this study, we quantified erosion coefficients using the relationship between millennial erosion rates and the corresponding channel steepness. Our work shows a twofold increase in erosion coefficients between basins within 15 km of major faults compared to those beyond 15 km, suggesting that tectonic deformation through seismic shaking and rock damage significantly affects eastern Tibet erosion and topography. This work demonstrates a field-based, quantitative relationship between rock erodibility and fault damage, which has important implications for improving landscape evolution models.
; ; ;
Award ID(s):
1945431 1728145
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Valla, Pierre (Ed.)
    Abstract Over the past few decades, tectonic geomorphology has been widely implemented to constrain spatial and temporal patterns of fault slip, especially where existing geologic or geodetic data are poor. We apply this practice along the eastern margin of Bull Mountain, Southwest Montana, where 15 transient channels are eroding into the flat, upstream relict landscape in response to an ongoing period of increased base level fall along the Western North Boulder fault. We aim to improve constraints on the spatial and temporal slip rates across the Western North Boulder fault zone by applying channel morphometrics, cosmogenic erosion rates, bedrock characteristics, and calibrated reproductions of the modern river profiles using a 1-dimensional stream power incision model that undergoes a change in the rate of base level fall. We perform over 104 base level fall simulations to explore a wide range of fault slip dynamics and stream power parameters. Our best fit simulations suggest that the Western North Boulder fault started as individual fault segments along the middle to southern regions of Bull Mountain that nucleated around 6.2 to 2.5 Ma, respectively. This was followed by the nucleation of fault segments in the northern region around 1.5 to 0.4 Ma. We recreate themore »evolution of the Western North Boulder fault to show that through time, these individual segments propagate at the fault tips and link together to span over 40 km, with a maximum slip of 462 m in the central portion of the fault. Fault slip rates range from 0.02 to 0.45 mm/yr along strike and are consistent with estimates for other active faults in the region. We find that the timing of fault initiation coincides well with the migration of the Yellowstone hotspot across the nearby Idaho-Montana border and thus attribute the initiation of extension to the crustal bulge from the migrating hotspot. Overall, we provide the first quantitative constraints on fault initiation and evolution of the Western North Boulder fault, perhaps the farthest north basin in the Northern Basin and Range province that such constraints exist. We show that river profiles are powerful tools for documenting the spatial and temporal patterns of normal fault evolution, especially where other geologic/geodetic methods are limited, proving to be a vital tool for accurate tectonic hazard assessments.« less
  2. The Tibetan Plateau, the largest highland on Earth, formed due to the collision of India-Asia over the past 50−60 m.y., and the evolution of the Tibetan Plateau impacts our knowledge of continental tectonics. Examination of the northernmost margin of the Tibetan Plateau is key to unravelling the deformation mechanisms acting in northern Tibet. The left-slip Altyn Tagh fault system defines the northwest margin of the Tibetan Plateau, separating the Western and Eastern Kunlun Ranges in the southwest. Both Cenozoic and pre-Cenozoic crustal deformation events at this junction between the Altyn Tagh and Kunlun Ranges were responsible for the construction of northwestern Tibet, yet the relative contribution of each phase remains unconstrained. The western domain of the Eastern Kunlun Range is marked by active NE-trending, left-slip deformation of the Altyn Tagh fault and an E-striking Cenozoic thrust system developed in response India-Asia collision. To better constrain the Paleozoic Altyn Tagh and Kunlun orogens and establish the Cenozoic structural framework, we conducted an integrated investigation involving detailed geologic mapping (∼1:50,000 scale), U-Pb zircon geochronology, and synthesis of existing data sets across northwestern Tibet. Our new zircon analyses from Paleoproterozoic−Cretaceous strata constrain stratigraphic age and sediment provenance and highlight Proterozoic−Paleozoic arc activity. Wemore »propose a tectonic model for the Neoproterozoic−Mesozoic evolution of northwestern Tibet wherein restoration of an ∼56-km-long balanced cross section across the western domain of the Eastern Kunlun suggests that Cenozoic minimum shortening strain was ∼30% (∼24 km shortening). Field evidence suggests this shortening commenced after ca. 25−20 Ma, which yields an average long-term shortening rate of 1.2−0.9 mm yr−1 and strain rates of 4.7 × 10−16 s−1 to 2.3 × 10−16 s−1. Geometric considerations demonstrate that this contractional deformation did not significantly contribute to left-slip offset on the Altyn Tagh fault, which has ∼10 mm/yr slip rates.« less
  3. The Indian (southwest) summer monsoon is one of the most intense climatic phenomena on Earth. Its long-term development has been linked to the growth of high topography in South and Central Asia. The Indian continental margin, adjoining the Arabian Sea, offers a unique opportunity to investigate tectonic–climatic interactions and the net impact of these processes on weathering and erosion of the western Himalaya. During International Ocean Discovery Program Expedition 355, two sites (U1456 and U1457) were drilled in Laxmi Basin in the eastern Arabian Sea to document the coevolution of mountain building, weathering, erosion, and climate over a range of timescales. In addition, recovering basement from the eastern Arabian Sea provides constraints on the early rifting history of the western continental margin of India with special emphasis on continental breakup between India and the Seychelles and its relationship to the plume-related volcanism of the Deccan Plateau. Drilling and coring operations during Expedition 355 recovered sediment from Sites U1456 and U1457 in the Laxmi Basin, penetrating 1109.4 and 1108.6 m below seafloor (mbsf), respectively. Drilling reached sediment dated to 13.5–17.7 Ma (late early to early middle Miocene) at Site U1456, although with a large hiatus between the lowermost sediment and overlyingmore »deposits dated to <10.9 Ma. At Site U1457, a much longer hiatus occurs near the base of the cored section, spanning from 10.9 to ~62 Ma. At both sites, hiatuses span ~8.2–9.2 and ~3.6–5.6 Ma, with a possible condensed section spanning ~2.0–2.6 Ma, although the total duration for each hiatus is slightly different between the two sites. A major submarine fan draining the western Himalaya and Karakoram must have been supplying sediment to the eastern Arabian Sea since at least ~17 Ma. Sand mineral assemblages indicate that the Greater Himalayan Crystalline Sequence was fully exposed to the surface by this time. Most of the recovered sediment appears to be derived from the Indus River and includes minerals that are unique to the Indus Suture Zone, in particular glaucophane and hypersthene, most likely originating from the structural base of the Kohistan arc. Pliocene sandy intervals at Site U1456 were deposited in lower fan “sheet lobe” settings, with intervals of basin plain turbidites separated by hemipelagic muddy sections deposited during the Miocene. Site U1457 is more distal in facies, reflecting its more marginal setting. No major active lobe appears to have affected the Laxmi Basin since the Middle Pleistocene (~1.2 Ma). We succeeded in recovering sections spanning the 8 Ma climatic transition, when monsoon intensity is believed to have changed strongly, although the nature of this change awaits postcruise analysis. We also recovered sediment from a large mass transport deposit measuring ~330 and ~190 m thick at Sites U1456 and U1457, respectively. This section includes an upper sequence of slump-folded muddy and silty rocks, as well as underlying calcarenites and limestone breccias, together with smaller amounts of volcanic clasts, all of which are likely derived from the western Indian continental shelf. Identification of similar facies on the regional seismic lines in Laxmi Basin suggests that these deposits form parts of one of the world’s largest mass transport deposits. Coring of igneous basement was successful at Site U1457. Recovery of massive basalt and associated volcaniclastic sediment at this site should address the key questions related to rifting and volcanism associated with formation of Laxmi Basin. Geochemical analysis is required to understand the petrogenesis and thus the tectonic setting of volcanism that will reveal whether it is oceanic basalt or volcanic rock contaminated by underlying continental crust or continental flood basalt. However, the fact that the lavas are massive and have few vesicles implies water depths of eruption likely deeper than 2000 m. This precludes opening of the basin in the presence of a major mantle thermal anomaly, such as that associated with the Deccan Large Igneous Province. Other observations made at the two sites during Expedition 355 provide vital constraints on the rift history of this margin. Heat flow measurements at the two drill sites were calculated to be ~57 and ~60 mW/m2. Such heat flow values are compatible with those observed in average oceanic crust of 63–84 Ma age, as well as with the presence of highly extended continental crust. Postcruise analyses of the more than ~1722 m of core will provide further information about the nature of tectonic–climatic interactions in this global type area for such studies.« less
  4. Abstract. Here we examine the landscape of New Zealand'sMarlborough Fault System (MFS), where the Australian and Pacific plates obliquelycollide, in order to study landscape evolution and the controls on fluvialpatterns at a long-lived plate boundary. We present maps of drainageanomalies and channel steepness, as well as an analysis of the plan-vieworientations of rivers and faults, and we find abundant evidence ofstructurally controlled drainage that we relate to a history of drainagecapture and rearrangement in response to mountain-building and strike-slipfaulting. Despite clear evidence of recent rearrangement of the western MFSdrainage network, rivers in this region still flow parallel to older faults,rather than along orthogonal traces of younger, active strike-slip faults.Such drainage patterns emphasize the importance of river entrenchment,showing that once rivers establish themselves along a structural grain,their capture or avulsion becomes difficult, even when exposed to newweakening and tectonic strain. Continued flow along older faults may alsoindicate that the younger faults have not yet generated a fault damage zonewith the material weakening needed to focus erosion and reorient rivers.Channel steepness is highest in the eastern MFS, in a zone centered on theKaikōura ranges, including within the low-elevation valleys of main stemrivers and at tributaries near the coast. This pattern is consistentmore »with anincrease in rock uplift rate toward a subduction front that is locked on itssouthern end. Based on these results and a wealth of previous geologicstudies, we propose two broad stages of landscape evolution over the last 25 million years of orogenesis. In the eastern MFS, Miocene folding above blindthrust faults generated prominent mountain peaks and formed major transverserivers early in the plate collision history. A transition to Pliocenedextral strike-slip faulting and widespread uplift led to cycles of riverchannel offset, deflection and capture of tributaries draining across activefaults, and headward erosion and captures by major transverse rivers withinthe western MFS. We predict a similar landscape will evolve south of theHope Fault, as the locus of plate boundary deformation migrates southwardinto this region with time.« less
  5. The Alaska Range suture zone exposes Cretaceous to Quaternary marine and nonmarine sedimentary and volcanic rocks sandwiched between oceanic rocks of the accreted Wrangellia composite terrane to the south and older continental terranes to the north. New U-Pb zircon ages, 40Ar/39Ar, ZHe, and AFT cooling ages, geochemical compositions, and geological field observations from these rocks provide improved constraints on the timing of Cretaceous to Miocene magmatism, sedimentation, and deformation within the collisional suture zone. Our results bear on the unclear displacement history of the seismically active Denali fault, which bisects the suture zone. Newly identified tuffs north of the Denali fault in sedimentary strata of the Cantwell Formation yield ca. 72 to ca. 68 Ma U-Pb zircon ages. Lavas sampled south of the Denali fault yield ca. 69 Ma 40Ar/39Ar ages and geochemical compositions typical of arc assemblages, ranging from basalt-andesite-trachyte, relatively high-K, and high concentrations of incompatible elements attributed to slab contribution (e.g., high Cs, Ba, and Th). The Late Cretaceous lavas and bentonites, together with regionally extensive coeval calc-alkaline plutons, record arc magmatism during contractional deformation and metamorphism within the suture zone. Latest Cretaceous volcanic and sedimentary strata are locally overlain by Eocene Teklanika Formation volcanic rocks withmore »geochemical compositions transitional between arc and intraplate affinity. New detrital-zircon data from the modern Teklanika River indicate peak Teklanika volcanism at ca. 57 Ma, which is also reflected in zircon Pb loss in Cantwell Formation bentonites. Teklanika Formation volcanism may reflect hypothesized slab break-off and a Paleocene–Eocene period of a transform margin configuration. Mafic dike swarms were emplaced along the Denali fault from ca. 38 to ca. 25 Ma based on new 40Ar/39Ar ages. Diking along the Denali fault may have been localized by strike-slip extension following a change in direction of the subducting oceanic plate beneath southern Alaska from N-NE to NW at ca. 46–40 Ma. Diking represents the last recorded episode of significant magmatism in the central and eastern Alaska Range, including along the Denali fault. Two tectonic models may explain emplacement of more primitive and less extensive Eocene–Oligocene magmas: delamination of the Late Cretaceous–Paleocene arc root and/or thickened suture zone lithosphere, or a slab window created during possible Paleocene slab break-off. Fluvial strata exposed just south of the Denali fault in the central Alaska Range record synorogenic sedimentation coeval with diking and inferred strike-slip displacement. Deposition occurred ca. 29 Ma based on palynomorphs and the youngest detrital zircons. U-Pb detrital-zircon geochronology and clast compositional data indicate the fluvial strata were derived from sedimentary and igneous bedrock presently exposed within the Alaska Range, including Cretaceous sources presently exposed on the opposite (north) side of the fault. The provenance data may indicate ~150 km or more of dextral offset of the ca. 29 Ma strata from inferred sediment sources, but different amounts of slip are feasible. Together, the dike swarms and fluvial strata are interpreted to record Oligocene strike-slip movement along the Denali fault system, coeval with strike-slip basin development along other segments of the fault. Diking and sedimentation occurred just prior to the onset of rapid and persistent exhumation ca. 25 Ma across the Alaska Range. This phase of reactivation of the suture zone is interpreted to reflect the translation along and convergence of southern Alaska across the Denali fault driven by highly coupled flat-slab subduction of the Yakutat microplate, which continues to accrete to the southern margin of Alaska. Furthermore, a change in Pacific plate direction and velocity at ca. 25 Ma created a more convergent regime along the apex of the Denali fault curve, likely contributing to the shutting off of near-fault extension- facilitated arc magmatism along this section of the fault system and increased exhumation rates.« less