skip to main content


Title: Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling

Rare high-3He/4He signatures in ocean island basalts (OIB) erupted at volcanic hotspots derive from deep-seated domains preserved in Earth’s interior. Only high-3He/4He OIB exhibit anomalous182W—an isotopic signature inherited during the earliest history of Earth—supporting an ancient origin of high3He/4He. However, it is not understood why some OIB host anomalous182W while others do not. We provide geochemical data for the highest-3He/4He lavas from Iceland (up to 42.9 times atmospheric) with anomalous182W and examine how Sr-Nd-Hf-Pb isotopic variations—useful for tracing subducted, recycled crust—relate to high3He/4He and anomalous182W. These data, together with data on global OIB, show that the highest-3He/4He and the largest-magnitude182W anomalies are found only in geochemically depleted mantle domains—with high143Nd/144Nd and low206Pb/204Pb—lacking strong signatures of recycled materials. In contrast, OIB with the strongest signatures associated with recycled materials have low3He/4He and lack anomalous182W. These observations provide important clues regarding the survival of the ancient He and W signatures in Earth’s mantle. We show that high-3He/4He mantle domains with anomalous182W have low W and4He concentrations compared to recycled materials and are therefore highly susceptible to being overprinted with low3He/4He and normal (not anomalous)182W characteristic of subducted crust. Thus, high3He/4He and anomalous182W are preserved exclusively in mantle domains least modified by recycled crust. This model places the long-term preservation of ancient high3He/4He and anomalous182W in the geodynamic context of crustal subduction and recycling and informs on survival of other early-formed heterogeneities in Earth’s interior.

 
more » « less
Award ID(s):
1900652
NSF-PAR ID:
10204973
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
49
ISSN:
0027-8424
Page Range / eLocation ID:
p. 30993-31001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mantle plumes contain heterogenous chemical components and sample variable depths of the mantle, enabling glimpses into the compositional structure of Earth's interior. In this study, we evaluated ocean island basalts (OIB) from nine plume locations to provide a global and systematic assessment of the relationship betweenfO2and He‐Sr‐Nd‐Pb‐W‐Os isotopic compositions. Ocean island basalts from the Pacific (Austral Islands, Hawaii, Mangaia, Samoa, Pitcairn), Atlantic (Azores, Canary Islands, St. Helena), and Indian Oceans (La Réunion) reveal thatfO2in OIB is heterogeneous both within and among hotspots. Taken together with previous studies, global OIB have elevated and heterogenousfO2(average = +0.5 ∆FMQ; 2SD = 1.5) relative to prior estimates of global mid‐ocean ridge basalts (MORB; average = −0.1 ∆FMQ; 2SD = 0.6), though many individual OIB overlap MORB. Specific mantle components, such as HIMU and enriched mantle 2 (EM2), defined by radiogenic Pb and Sr isotopic compositions compared to other OIB, respectively, have distinctly highfO2based on statistical analysis. ElevatedfO2in OIB samples of these components is associated with higher whole‐rock CaO/Al2O3and olivine CaO content, which may be linked to recycled carbonated oceanic crust. EM1‐type and geochemically depleted OIB are generally not as oxidized, possibly due to limited oxidizing potential of the recycled material in the enriched mantle 1 (EM1) component (e.g., sediment) or lack of recycled materials in geochemically depleted OIB. Despite systematic offset of thefO2among EM1‐, EM2‐, and HIMU‐type OIB, geochemical indices of lithospheric recycling, such as Sr‐Nd‐Pb‐Os isotopic systems, generally do not correlate withfO2.

     
    more » « less
  2. Abstract

    The spatial distribution of the geochemical domains hosting recycled crust and primordial (high‐3He/4He) reservoirs, and how they are linked to mantle convection, are poorly understood. Two continent‐sized seismic anomalies located near the core‐mantle boundary—called the Large Low Shear Wave Velocity Provinces (LLSVPs)—are potential geochemical reservoir hosts. It has been suggested that high‐3He/4He hotspots are spatially confined to the LLSVPs, hotspots sampling recycled continental crust are associated with only one of the LLSVPs, and recycled continental crust shows no relationship with latitude. We reevaluate the links between LLSVPs and isotopic signatures of hotspot lavas using improved mantle flow models including plume conduit advection. While most hotspots with the highest‐3He/4He can indeed be traced to the LLSVP interiors, at least one high‐3He/4He hotspot, Yellowstone, is located outside of the LLSVPs. This suggests high‐3He/4He is not geographically confined to the LLSVPs. Instead, a positive correlation between hotspot buoyancy flux and maximum hotspot3He/4He suggests that it is plume dynamics (i.e., buoyancy), not geography, which determines whether a dense, deep, and possibly widespread high‐3He/4He reservoir is entrained. We also show that plume‐fed EM hotspots (enriched mantle, with low‐143Nd/144Nd), signaling recycled continental crust, are spatially linked to both LLSVPs, and located primarily in the southern hemisphere. Lastly, we confirm that hotspots sampling HIMU (“high‐μ,” or high238U/204Pb) domains are not spatially limited to the LLSVPs. These findings clarify and advance our understanding of deep mantle reservoir distributions, and we discuss how continental and oceanic crust subduction is consistent with the spatial decoupling of EM and HIMU.

     
    more » « less
  3. The isotopic characteristics of ocean island basalts have long been used to infer the nature of their source and the long-term evolution of the Earth’s mantle. Anticorrelation between tungsten and helium isotopic signatures is a particularly puzzling feature in those basalts, which no single process appears to explain. Traditionally, the high 3 He/ 4 He signature has been attributed to an undegassed reservoir in the deep mantle. Additional processes needed to obtain low 182 W/ 184 W often entail unobserved ancillary geochemical effects. It has been suggested, however, that the core feeds the lower mantle with primordial helium, obviating the need for an undegassed mantle reservoir. Independently, the tungsten-rich core has been suggested to impart the plume source with anomalous tungsten isotope signatures. We advance the idea that isotopic diffusion may simultaneously transport both tungsten and helium across the core–mantle boundary, with the striking implication that diffusion can naturally account for the observed isotopic trend. By modeling the long-term isotopic evolution of mantle domains, we demonstrate that this mechanism can account for more than sufficient isotopic ratios in plume-source material, which, after dynamical transport to the Earth’s surface, are consistent with the present-day mantle W-He isotopic heterogeneities. No undegassed mantle reservoir is required, bearing significance on early Earth conditions such as the extent of magma oceans. 
    more » « less
  4. Abstract

    There is a consensus that volcanism along the East African Rift System (EARS) is related to plume activities. However, because of our limited knowledge of the local lithospheric mantle, the dynamics of the plume are poorly constrained by magma chemistry. The Turkana Basin is one of the best places to study plume‐related volcanism because the lithospheric mantle there is unusually thin. New Ar‐Ar geochronology and geochemical data on lavas from western Turkana show that Eocene volcanics have relatively low206Pb/204Pb (<19.1) and high εNd (>3.78). Their relatively high Ba/Rb (35–78) ratios suggest contributions from the shallow lithospheric mantle. Oligo‐Miocene Turkana volcanics have HIMU‐ and EMI‐ type enriched mantle signatures with overall lower Ba/Rb ratios, which is consistent with partial melting of plume material. Pliocene and younger Turkana volcanics have low Ba/Rb and Sr‐Nd‐Pb isotope ratios that resemble those of Ethiopian volcanics with elevated3He/4He ratios. This temporal variation can be reconciled with a layered plume model where an outer layer of ancient recycled oceanic crust and sediment overlies more primitive lower mantle material. Beneath Ethiopia, the outer layer of the plume is either missing or punctured by the delamination of the thicker overlying lithospheric mantle atca.30 Ma, an event that would have facilitated the rapid upwelling of the inner portion of the plume and triggered the Ethiopian flood volcanism. The outer layer of the plume may be thicker in the southern EARS, which could explain the occurrence of young HIMU‐ and EMI‐type volcanics with primordial noble gas signatures.

     
    more » « less
  5. Abstract

    Oceanic hotspots with extreme enriched mantle radiogenic isotopic signatures—including low143Nd/144Nd indicative of subducted continental crust—are linked to plume conduits sampling the southern hemispheric mantle. However, the mechanisms responsible for concentrating subducted continental crust in the austral mantle are unknown. We show that subduction of sediments and subduction eroded material, and lower continental crust delamination, cannot generate this spatially coherent austral geochemical domain. However, continental collisions—associated with the assembly of Gondwana‐Pangea—were positioned predominantly in the southern hemisphere during the late Neoproterozoic appearance of widespread continental ultra‐high‐pressure metamorphic terranes, which marked the onset of deep subduction of upper continental crust. We propose that deep subduction of upper continental crust at ancient rifted‐passive margins during ca. 650‐300 Ma austral supercontinent assembly resulted in enhanced upper continental crust delivery into the southern hemisphere mantle. Similarly enriched mantle domains are absent in the boreal mantle plume source, for two reasons. First, continental crust subducted after 300 Ma—when the continents drifted into the northern hemisphere—has had insufficient time to return to the surface in plumes sampling the northern hemisphere mantle. Second, before the first known appearance of continental ultra‐high‐pressure rocks at 650 Ma, deep subduction of upper continental crust was uncommon, limiting its subduction into the northern (and southern) hemisphere mantle earlier in Earth history. Our model implies a recent formation of the austral enriched mantle domain, explains the geochemical dichotomy between austral and boreal plume sources, and may explain why there are twice as many austral hotspots as boreal hotspots.

     
    more » « less