skip to main content


Title: Tensor Methods for Nonlinear Matrix Completion
In the low-rank matrix completion (LRMC) problem, the low-rank assumption means that the columns (or rows) of the matrix to be completed are points on a low-dimensional linear algebraic variety. This paper extends this thinking to cases where the columns are points on a low-dimensional nonlinear algebraic variety, a problem we call Low Algebraic Dimension Matrix Completion (LADMC). Matrices whose columns belong to a union of subspaces are an important special case. We propose a LADMC algorithm that leverages existing LRMC methods on a tensorized representation of the data. For example, a second-order tensorized representation is formed by taking the Kronecker product of each column with itself, and we consider higher order tensorizations as well. This approach will succeed in many cases where traditional LRMC is guaranteed to fail because the data are low-rank in the tensorized representation but not in the original representation. We also provide a formal mathematical justi cation for the success of our method. In particular, we give bounds of the rank of these data in the tensorized representation, and we prove sampling requirements to guarantee uniqueness of the solution. We also provide experimental results showing that the new approach outperforms existing state-of-the-art methods for matrix completion under a union of subspaces model.  more » « less
Award ID(s):
1838179
NSF-PAR ID:
10205316
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
SIAM journal on mathematics of data science
ISSN:
2577-0187
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We address the problem of high-rank matrix completion with side information. In contrast to existing work dealing with side information, which assume that the data matrix is low-rank, we consider the more general scenario where the columns of the data matrix are drawn from a union of low-dimensional subspaces, which can lead to a high rank matrix. Our goal is to complete the matrix while taking advantage of the side information. To do so, we use the self-expressive property of the data, searching for a sparse representation of each column of matrix as a combination of a few other columns. More specifically, we propose a factorization of the data matrix as the product of side information matrices with an unknown interaction matrix, under which each column of the data matrix can be reconstructed using a sparse combination of other columns. As our proposed optimization, searching for missing entries and sparse coefficients, is non-convex and NP-hard, we propose a lifting framework, where we couple sparse coefficients and missing values and define an equivalent optimization that is amenable to convex relaxation. We also propose a fast implementation of our convex framework using a Linearized Alternating Direction Method. By extensive experiments on both synthetic and real data, and, in particular, by studying the problem of multi-label learning, we demonstrate that our method outperforms existing techniques in both low-rank and high-rank data regimes. 
    more » « less
  2. We address the problem of high-rank matrix completion with side information. In contrast to existing work dealing with side information, which assume that the data matrix is low-rank, we consider the more general scenario where the columns of the data matrix are drawn from a union of low-dimensional subspaces, which can lead to a high rank matrix. Our goal is to complete the matrix while taking advantage of the side information. To do so, we use the self-expressive property of the data, searching for a sparse representation of each column of matrix as a combination of a few other columns. More specifically, we propose a factorization of the data matrix as the product of side information matrices with an unknown interaction matrix, under which each column of the data matrix can be reconstructed using a sparse combination of other columns. As our proposed optimization, searching for missing entries and sparse coefficients, is non-convex and NP-hard, we propose a lifting framework, where we couple sparse coefficients and missing values and define an equivalent optimization that is amenable to convex relaxation. We also propose a fast implementation of our convex framework using a Linearized Alternating Direction Method. By extensive experiments on both synthetic and real data, and, in particular, by studying the problem of multi-label learning, we demonstrate that our method outperforms existing techniques in both low-rank and high-rank data regimes 
    more » « less
  3. null (Ed.)
    Abstract Subspace clustering is the unsupervised grouping of points lying near a union of low-dimensional linear subspaces. Algorithms based directly on geometric properties of such data tend to either provide poor empirical performance, lack theoretical guarantees or depend heavily on their initialization. We present a novel geometric approach to the subspace clustering problem that leverages ensembles of the $K$-subspace (KSS) algorithm via the evidence accumulation clustering framework. Our algorithm, referred to as ensemble $K$-subspaces (EKSSs), forms a co-association matrix whose $(i,j)$th entry is the number of times points $i$ and $j$ are clustered together by several runs of KSS with random initializations. We prove general recovery guarantees for any algorithm that forms an affinity matrix with entries close to a monotonic transformation of pairwise absolute inner products. We then show that a specific instance of EKSS results in an affinity matrix with entries of this form, and hence our proposed algorithm can provably recover subspaces under similar conditions to state-of-the-art algorithms. The finding is, to the best of our knowledge, the first recovery guarantee for evidence accumulation clustering and for KSS variants. We show on synthetic data that our method performs well in the traditionally challenging settings of subspaces with large intersection, subspaces with small principal angles and noisy data. Finally, we evaluate our algorithm on six common benchmark datasets and show that unlike existing methods, EKSS achieves excellent empirical performance when there are both a small and large number of points per subspace. 
    more » « less
  4. An evolutionary self-expressive model for clustering a collection of evolving data points that lie on a union of low-dimensional evolving subspaces is proposed. A parsimonious representation of data points at each time step is learned via a non-convex optimization framework that exploits the self-expressiveness property of the evolving data while taking into account data representation from the preceding time step. The resulting scheme adaptively learns an innovation matrix that captures changes in self-representation of data in consecutive time steps as well as a smoothing parameter reflective of the rate of data evolution. Extensive experiments demonstrate superiority of the proposed framework overs state-of-the-art static subspace clustering algorithms and existing evolutionary clustering schemes. 
    more » « less
  5. Knowledge graph (KG) representation learning aims to encode entities and relations into dense continuous vector spaces such that knowledge contained in a dataset could be consistently represented. Dense embeddings trained from KG datasets benefit a variety of downstream tasks such as KG completion and link prediction. However, existing KG embedding methods fell short to provide a systematic solution for the global consistency of knowledge representation. We developed a mathematical language for KG based on an observation of their inherent algebraic structure, which we termed as Knowledgebra. By analyzing five distinct algebraic properties, we proved that the semigroup is the most reasonable algebraic structure for the relation embedding of a general knowledge graph. We implemented an instantiation model, SemE, using simple matrix semigroups, which exhibits state-of-the-art performance on standard datasets. Moreover, we proposed a regularization-based method to integrate chain-like logic rules derived from human knowledge into embedding training, which further demonstrates the power of the developed language. As far as we know, by applying abstract algebra in statistical learning, this work develops the first formal language for general knowledge graphs, and also sheds light on the problem of neural-symbolic integration from an algebraic perspective. 
    more » « less