skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Draft Genome Sequences of Two Polycyclic Tetramate Macrolactam Producers, Streptomyces sp. Strains JV180 and SP18CM02
ABSTRACT Here, we report the draft genome sequences of two related Streptomyces sp. strains, JV180 and SP18CM02. Despite their isolation from soils in Connecticut and Missouri (USA), respectively, they are strikingly similar in gene content. Both belong to the Streptomyces griseus clade and harbor several secondary metabolite biosynthetic gene clusters.  more » « less
Award ID(s):
1846005
PAR ID:
10205454
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Stedman, Kenneth M.
Date Published:
Journal Name:
Microbiology Resource Announcements
Volume:
9
Issue:
50
ISSN:
2576-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Although plant microbiome assembly involves a series of both plant–microbe and microbe–microbe interactions, the latter is less often directly tested. Here, we investigate a role for Streptomyces strains to influence assembly of other bacteria into root microbiomes through the use of two synthetic communities (SynComs): a 21-member community including four Streptomyces strains and a 17-member community lacking those Streptomyces strains. Following inoculation with these SynComs on wild-type Arabidopsis thaliana Col-0, differential abundance modeling on root endosphere 16S ribosomal RNA gene amplicon sequencing data revealed altered abundance of four diverse SynCom members: Arthrobacter sp. 131, Agrobacterium sp. 33, Burkholderia sp. CL11, and Ralstonia sp. CL21. Modeling results were tested by seedling coinoculation experiments with the four Streptomyces strains and differentially abundant members, which confirmed the predicted decreased abundance for Arthrobacter sp. 131, Agrobacterium sp. 33, and Ralstonia sp. CL21 when Streptomyces strains were present. We further characterized how the phytohormone salicylic acid (SA) mediates Streptomyces strains’ influence over Agrobacterium sp. 33 and Burkholderia sp. CL11 seedling colonization. Although decreased colonization of Ralstonia sp. CL21 and Arthrobacter sp. 131 when Streptomyces spp. are present were not influenced by SA, direct antibiosis of Arthrobacter sp. 131 by Streptomyces was observed. These results highlight a role for Streptomyces-mediated microbial interactions during plant root microbiome assembly as well as distinct mechanisms that mediate them. Understanding the role of microbial interactions during microbiome assembly will inform the production of beneficial microbial treatments for use in agricultural fields. 
    more » « less
  2. Dennehy, John J (Ed.)
    Amabiko is a lytic subcluster BE2 bacteriophage that infects Streptomyces scabiei — a bacterium causing common scab in potatoes. Its 131,414 bp genome has a GC content of 49.5% and contains 245 putative protein-coding genes, 45 tRNAs, and one tmRNA. Amabiko is closely related to Streptomyces bacteriophage MindFlayer (gene content similarity: 86.5%). 
    more » « less
  3. Streptomyces genomes harbor numerous, biosynthetic gene clusters (BGCs) encoding for drug-like compounds. While some of these BGCs readily yield expected products, many do not. Biosynthetic crypticity represents a significant hurdle to drug discovery, and the biological mechanisms that underpin it remain poorly understood. Polycyclic tetramate macrolactam (PTM) antibiotic production is widespread within the Streptomyces genus, and examples of active and cryptic PTM BGCs are known. To reveal further insights into the causes of biosynthetic crypticity, we employed a PTM-targeted comparative metabologenomics approach to analyze a panel of S. griseus clade strains that included both poor and robust PTM producers. By comparing the genomes and PTM production profiles of these strains, we systematically mapped the PTM promoter architecture within the group, revealed that these promoters are directly activated via the global regulator AdpA, and discovered that small promoter insertion–deletion lesions (indels) differentiate weaker PTM producers from stronger ones. We also revealed an unexpected link between robust PTM expression and griseorhodin pigment coproduction, with weaker S. griseus –clade PTM producers being unable to produce the latter compound. This study highlights promoter indels and biosynthetic interactions as important, genetically encoded factors that impact BGC outputs, providing mechanistic insights that will undoubtedly extend to other Streptomyces BGCs. We highlight comparative metabologenomics as a powerful approach to expose genomic features that differentiate strong, antibiotic producers from weaker ones. This should prove useful for rational discovery efforts and is orthogonal to current engineering and molecular signaling approaches now standard in the field. 
    more » « less
  4. High-copy-number plasmids are indispensable tools for gene overexpression studies in prokaryotes to engineer pathways or probe phenotypes of interest. The development of genetic tools for the industrially relevant Actinobacteria is of special interest, given their utility in producing keratolytic enzymes and biologically active natural products. Within the Actinobacteria, Streptomyces–Escherichia coli shuttle vectors based on the SCP2* and pIJ101 incompatibility groups are widely employed for molecular cloning and gene expression studies. Here, the sequences of two commonly used pIJ101-based Streptomyces–E. coli shuttle vectors, pEM4 and pUWL201, were determined using next-generation sequencing. These plasmids drive the expression of heterologous genes using the constitutive ermE*p promoter. pEM4 was found to be 8.3 kbp long, containing a β-lactamase gene, thiostrepton resistance marker, the lacZɑ fragment, a ColE1 origin of replication and the Streptomyces pIJ101 origin of replication. pUWL201 was found to be 6.78 kbp long, containing a β-lactamase gene, thiostrepton resistance marker, the lacZɑ fragment, a ColE1 origin of replication and the Streptomyces pIJ101 origin of replication. Interestingly, the sequences for both pEM4 and pUWL201 exceed their previously reported size by 1.1 and 0.4 kbp, respectively. This report updates the literature with the corrected sequences for these shuttle vectors, ensuring their compatibility with modern synthetic biology cloning methodologies. 
    more » « less
  5. null (Ed.)
    Abstract Background Antibiotic-producing Streptomyces bacteria are ubiquitous in nature, yet most studies of its diversity have focused on free-living strains inhabiting diverse soil environments and those in symbiotic relationship with invertebrates. Results We studied the draft genomes of 73 Streptomyces isolates sampled from the skin (wing and tail membranes) and fur surfaces of bats collected in Arizona and New Mexico. We uncovered large genomic variation and biosynthetic potential, even among closely related strains. The isolates, which were initially identified as three distinct species based on sequence variation in the 16S rRNA locus, could be distinguished as 41 different species based on genome-wide average nucleotide identity. Of the 32 biosynthetic gene cluster (BGC) classes detected, non-ribosomal peptide synthetases, siderophores, and terpenes were present in all genomes. On average, Streptomyces genomes carried 14 distinct classes of BGCs (range = 9–20). Results also revealed large inter- and intra-species variation in gene content (single nucleotide polymorphisms, accessory genes and singletons) and BGCs, further contributing to the overall genetic diversity present in bat-associated Streptomyces . Finally, we show that genome-wide recombination has partly contributed to the large genomic variation among strains of the same species. Conclusions Our study provides an initial genomic assessment of bat-associated Streptomyces that will be critical to prioritizing those strains with the greatest ability to produce novel antibiotics. It also highlights the need to recognize within-species variation as an important factor in genetic manipulation studies, diversity estimates and drug discovery efforts in Streptomyces . 
    more » « less