skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Light-Weight RetinaNet for Object Detection on Edge Devices
This paper aims at reducing computation for Retinanet, an mAP-30-tier network, to facilitate its practical deployment on edge devices for providing IoT-based object detection services. We first validate RetinaNet has the best FLOP-mAP trade-off among all mAP-30-tier network. Then, we propose a light-weight RetinaNet structure with effective computation- accuracy trade-off by only reducing FLOPs in computationally intensive layers. Compared with the most common way of trading off computation with accuracy-input image scaling, the proposed solution shows a consistently better FLOPs-mAP trade-off curve. Light-weight RetinaNet achieves a 0.3% mAP improvement at 1.8x FLOPs reduction point over the original RetinaNet, and gains 1.8x more energy-efficiency on an Intel Arria 10 FPGA accelerator in the context of edge computing. The proposed method potentially can help a wide range of the object detection applications to move closer to a preferred corner for a better runtime and accuracy, while enjoys more energy-efficient inference at the edge.  more » « less
Award ID(s):
1652038
PAR ID:
10205534
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE 6th World Forum on Internet of Things (WF-IoT)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent years, Convolutional Neural Networks (CNNs) have shown superior capability in visual learning tasks. While accuracy-wise CNNs provide unprecedented performance, they are also known to be computationally intensive and energy demanding for modern computer systems. In this paper, we propose Virtual Pooling (ViP), a model-level approach to improve speed and energy consumption of CNN-based image classification and object detection tasks, with a provable error bound. We show the efficacy of ViP through experiments on four CNN models, three representative datasets, both desktop and mobile platforms, and two visual learning tasks, i.e., image classification and object detection. For example, ViP delivers 2.1x speedup with less than 1.5% accuracy degradation in ImageNet classification on VGG16, and 1.8x speedup with 0.025 mAP degradation in PASCAL VOC object detection with Faster-RCNN. ViP also reduces mobile GPU and CPU energy consumption by up to 55% and 70%, respectively. As a complementary method to existing acceleration approaches, ViP achieves 1.9x speedup on ThiNet leading to a combined speedup of 5.23x on VGG16. Furthermore, ViP provides a knob for machine learning practitioners to generate a set of CNN models with varying trade-offs between system speed/energy consumption and accuracy to better accommodate the requirements of their tasks. Code is available at https://github.com/cmu-enyac/VirtualPooling. 
    more » « less
  2. Recent advances in computer vision has led to a growth of interest in deploying visual analytics model on mobile devices. However, most mobile devices have limited computing power, which prohibits them from running large scale visual analytics neural networks. An emerging approach to solve this problem is to offload the computation of these neural networks to computing resources at an edge server. Efficient computation offloading requires optimizing the trade-off between multiple objectives including compressed data rate, analytics performance, and computation speed. In this work, we consider a “split computation” system to offload a part of the computation of the YOLO object detection model. We propose a learnable feature compression approach to compress the intermediate YOLO features with lightweight computation. We train the feature compression and decompression module together with the YOLO model to optimize the object detection accuracy under a rate constraint. Compared to baseline methods that apply either standard image compression or learned image compression at the mobile and perform image de-compression and YOLO at the edge, the proposed system achieves higher detection accuracy at the low to medium rate range. Furthermore, the proposed system requires substantially lower computation time on the mobile device with CPU only. 
    more » « less
  3. Spiking neural networks (SNNs) have received increasing attention due to their high biological plausibility and energy efficiency. The binary spike-based information propagation enables efficient sparse computation in event-based and static computer vision applications. However, the weight precision and especially the membrane potential precision remain as high-precision values (e.g., 32 bits) in state-of-the-art SNN algorithms. Each neuron in an SNN stores the membrane potential over time and typically updates its value in every time step. Such frequent read/write operations of high-precision membrane potential incur storage and memory access overhead in SNNs, which undermines the SNNs' compatibility with resource-constrained hardware. To resolve this inefficiency, prior works have explored the time step reduction and low-precision representation of membrane potential at a limited scale and reported significant accuracy drops. Furthermore, while recent advances in on-device AI present pruning and quantization optimization with different architectures and datasets, simultaneous pruning with quantization is highly under-explored in SNNs. In this work, we present SpQuant-SNN, a fully-quantized spiking neural network with ultra-low precision weights, membrane potential, and high spatial-channel sparsity, enabling the end-to-end low precision with significantly reduced operations on SNN. First, we propose an integer-only quantization scheme for the membrane potential with a stacked surrogate gradient function, a simple-yet-effective method that enables the smooth learning process of quantized SNN training. Second, we implement spatial-channel pruning with membrane potential prior, toward reducing the layer-wise computational complexity, and floating-point operations (FLOPs) in SNNs. Finally, to further improve the accuracy of low-precision and sparse SNN, we propose a self-adaptive learnable potential threshold for SNN training. Equipped with high biological adaptiveness, minimal computations, and memory utilization, SpQuant-SNN achieves state-of-the-art performance across multiple SNN models for both event-based and static image datasets, including both image classification and object detection tasks. The proposed SpQuant-SNN achieved up to 13× memory reduction and >4.7× FLOPs reduction with ~1.8% accuracy degradation for both classification and object detection tasks, compared to the SOTA baseline. 
    more » « less
  4. This paper proposes a new deep neural network for object detection. The proposed network, termed ASSD, builds feature relations in the spatial space of the feature map. With the global relation information, ASSD learns to highlight useful regions on the feature maps while suppressing the irrelevant information, thereby providing reliable guidance for object detection. Compared to methods that rely on complicated CNN layers to refine the feature maps, ASSD is simple in design and is computationally efficient. Experimental results show that ASSD competes favorably with the state-of-the-arts, including SSD, DSSD, FSSD and RetinaNet 
    more » « less
  5. Hyperdimensional computing (HDC) has emerged as a new light-weight learning algorithm with smaller computation and energy requirements compared to conventional techniques. In HDC, data points are represented by high dimensional vectors (hypervectors), which are mapped to high dimensional space (hyperspace). Typically, a large hypervector dimension (≥1000) is required to achieve accuracies comparable to conventional alternatives. However, unnecessarily large hypervectors increase hardware and energy costs, which can undermine their benefits. This paper presents a technique to minimize the hypervector dimension while maintaining the accuracy and improving the robustness of the classifier. To this end, we formulate hypervector design as a multi-objective optimization problem for the first time in the literature. The proposed approach decreases the hypervector dimension by more than 128× while maintaining or increasing the accuracy achieved by conventional HDC. Experiments on a commercial hardware platform show that the proposed approach achieves more than two orders of magnitude reduction in model size, inference time, and energy consumption. We also demonstrate the trade-off between accuracy and robustness to noise and provide Pareto front solutions as a design parameter in our hypervector design. 
    more » « less