skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ViP: Virtual Pooling for Accelerating CNN-based Image Classification and Object Detection
In recent years, Convolutional Neural Networks (CNNs) have shown superior capability in visual learning tasks. While accuracy-wise CNNs provide unprecedented performance, they are also known to be computationally intensive and energy demanding for modern computer systems. In this paper, we propose Virtual Pooling (ViP), a model-level approach to improve speed and energy consumption of CNN-based image classification and object detection tasks, with a provable error bound. We show the efficacy of ViP through experiments on four CNN models, three representative datasets, both desktop and mobile platforms, and two visual learning tasks, i.e., image classification and object detection. For example, ViP delivers 2.1x speedup with less than 1.5% accuracy degradation in ImageNet classification on VGG16, and 1.8x speedup with 0.025 mAP degradation in PASCAL VOC object detection with Faster-RCNN. ViP also reduces mobile GPU and CPU energy consumption by up to 55% and 70%, respectively. As a complementary method to existing acceleration approaches, ViP achieves 1.9x speedup on ThiNet leading to a combined speedup of 5.23x on VGG16. Furthermore, ViP provides a knob for machine learning practitioners to generate a set of CNN models with varying trade-offs between system speed/energy consumption and accuracy to better accommodate the requirements of their tasks. Code is available at https://github.com/cmu-enyac/VirtualPooling.  more » « less
Award ID(s):
1815899
PAR ID:
10197818
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE Winter Conference on Applications of Computer Vision (WACV)
Page Range / eLocation ID:
1169 to 1178
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    CNNs (Convolutional Neural Networks) are becoming increasingly important for real-time applications, such as image classification in traffic control, visual surveillance, and smart manufacturing. It is challenging, however, to meet timing constraints of image processing tasks using CNNs due to their complexity. Performing dynamic trade-offs between the inference accuracy and time for image data analysis in CNNs is challenging too, since we observe that more complex CNNs that take longer to run even lead to lower accuracy in many cases by evaluating hundreds of CNN models in terms of time and accuracy using two popular data sets, MNIST and CIFAR-10. To address these challenges, we propose a new approach that (1) generates CNN models and analyzes their average inference time and accuracy for image classification, (2) stores a small subset of the CNNs with monotonic time and accuracy relationships offline, and (3) efficiently selects an effective CNN expected to support the highest possible accuracy among the stored CNNs subject to the remaining time to the deadline at run time. In our extensive evaluation, we verify that the CNNs derived by our approach are more flexible and cost-efficient than two baseline approaches. We verify that our approach can effectively build a compact set of CNNs and efficiently support systematic time vs. accuracy trade-offs, if necessary, to meet the user-specified timing and accuracy requirements. Moreover, the overhead of our approach is little/acceptable in terms of latency and memory consumption. 
    more » « less
  2. Vision transformers (ViTs) have dominated computer vision in recent years. However, ViTs are computationally expensive and not well suited for mobile devices; this led to the prevalence of convolutional neural network (CNN) and ViT-based hybrid models for mobile vision applications. Recently, Vision GNN (ViG) and CNN hybrid models have also been proposed for mobile vision tasks. However, all of these methods remain slower compared to pure CNN-based models. In this work, we propose Multi-Level Dilated Convolutions to devise a purely CNN-based mobile backbone. Using Multi-Level Dilated Convolutions allows for a larger theoretical receptive field than standard convolutions. Different levels of dilation also allow for interactions between the short-range and long-range features in an image. Experiments show that our proposed model outperforms state-of-the-art (SOTA) mobile CNN, ViT, ViG, and hybrid architectures in terms of accuracy and/or speed on image classification, object detection, instance segmentation, and semantic segmentation. Our fastest model, RapidNet-Ti, achieves 76.3% top-1 accuracy on ImageNet-1K with 0.9 ms inference latency on an iPhone 13 mini NPU, which is faster and more accurate than MobileNetV2x1.4 (74.7% top-1 with 1.0 ms latency). Our work shows that pure CNN architectures can beat SOTA hybrid and ViT models in terms of accuracy and speed when designed properly 
    more » « less
  3. Convolutional neural networks (CNNs) play an important role in today's mobile and edge computing systems for vision-based tasks like object classification and detection. However, state-of-the-art methods on CNN acceleration are trapped in either limited practical latency speed-up on general computing platforms or latency speed-up with severe accuracy loss. In this paper, we propose a spatial-based dynamic CNN acceleration framework, NeuLens, for mobile and edge platforms. Specially, we design a novel dynamic inference mechanism, assemble region-aware convolution (ARAC) supernet, that peels off redundant operations inside CNN models as many as possible based on spatial redundancy and channel slicing. In ARAC supernet, the CNN inference flow is split into multiple independent micro-flows, and the computational cost of each can be autonomously adjusted based on its tiled-input content and application requirements. These micro-flows can be loaded into hardware like GPUs as single models. Consequently, its operation reduction can be well translated into latency speed-up and is compatible with hardware-level accelerations. Moreover, the inference accuracy can be well preserved by identifying critical regions on images and processing them in the original resolution with large micro-flow. Based on our evaluation, NeuLens outperforms baseline methods by up to 58% latency reduction with the same accuracy and by up to 67.9% accuracy improvement under the same latency/memory constraints. 
    more » « less
  4. Zelinski, Michael E.; Taha, Tarek M.; Howe, Jonathan (Ed.)
    Image classification forms an important class of problems in machine learning and is widely used in many realworld applications, such as medicine, ecology, astronomy, and defense. Convolutional neural networks (CNNs) are machine learning techniques designed for inputs with grid structures, e.g., images, whose features are spatially correlated. As such, CNNs have been demonstrated to be highly effective approaches for many image classification problems and have consistently outperformed other approaches in many image classification and object detection competitions. A particular challenge involved in using machine learning for classifying images is measurement data loss in the form of missing pixels, which occurs in settings where scene occlusions are present or where the photodetectors in the imaging system are partially damaged. In such cases, the performance of CNN models tends to deteriorate or becomes unreliable even when the perturbations to the input image are small. In this work, we investigate techniques for improving the performance of CNN models for image classification with missing data. In particular, we explore training on a variety of data alterations that mimic data loss for producing more robust classifiers. By optimizing the categorical cross-entropy loss function, we demonstrate through numerical experiments on the MNIST dataset that training with these synthetic alterations can enhance the classification accuracy of our CNN models. 
    more » « less
  5. It is challenging to deploy 3D Convolutional Neural Networks (3D CNNs) on mobile devices, specifically if both real-time execution and high inference accuracy are in demand, because the increasingly large model size and complex model structure of 3D CNNs usually require tremendous computation and memory resources. Weight pruning is proposed to mitigate this challenge. However, existing pruning is either not compatible with modern parallel architectures, resulting in long inference latency or subject to significant accuracy degradation. This paper proposes an end-to-end 3D CNN acceleration framework based on pruning/compilation co-design called Mobile-3DCNN that consists of two parts: a novel, fine-grained structured pruning enhanced by a prune/Winograd adaptive selection (that is mobile-hardware-friendly and can achieve high pruning accuracy), and a set of compiler optimization and code generation techniques enabled by our pruning (to fully transform the pruning benefit to real performance gains). The evaluation demonstrates that Mobile-3DCNN outperforms state-of-the-art end-to-end DNN acceleration frameworks that support 3D CNN execution on mobile devices, Alibaba Mobile Neural Networks and Pytorch-Mobile with speedup up to 34 × with minor accuracy degradation, proving it is possible to execute high-accuracy large 3D CNNs on mobile devices in real-time (or even ultra-real-time). 
    more » « less