skip to main content


Title: Reconstructing Classification to Enhance Machine-Learning Based Network Intrusion Detection by Embracing Ambiguity
Network intrusion detection systems (IDS) has efficiently identified the profiles of normal network activities, extracted intrusion patterns, and constructed generalized models to evaluate (un)known attacks using a wide range of machine learning approaches. In spite of the effectiveness of machine learning-based IDS, it has been still challenging to reduce high false alarms due to data misclassification. In this paper, by using multiple decision mechanisms, we propose a new classification method to identify misclassified data and then to classify them into three different classes, called a malicious, benign, and ambiguous dataset. In other words, the ambiguous dataset contains a majority of the misclassified dataset and is thus the most informative for improving the model and anomaly detection because of the lack of confidence for the data classification in the model. We evaluate our approach with the recent real-world network traffic data, Kyoto2006+ datasets, and show that the ambiguous dataset contains 77.2% of the previously misclassified data. Re-evaluating the ambiguous dataset effectively reduces the false prediction rate with minimal overhead and improves accuracy by 15%.  more » « less
Award ID(s):
1723804
NSF-PAR ID:
10205617
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Silicon Valley Cybersecurity Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ayahiko Niimi, Future University-Hakodate (Ed.)
    Traditional Network Intrusion Detection Systems (NIDS) encounter difficulties due to the exponential growth of network traffic data and modern attacks' requirements. This paper presents a novel network intrusion classification framework using transfer learning from the VGG-16 pre-trained model. The framework extracts feature leveraging pre-trained weights trained on the ImageNet dataset in the initial step, and finally, applies a deep neural network to the extracted features for intrusion classification. We applied the presented framework on NSL-KDD, a benchmark dataset for network intrusion, to evaluate the proposed framework's performance. We also implemented other pre-trained models such as VGG19, MobileNet, ResNet-50, and Inception V3 to evaluate and compare performance. This paper also displays both binary classification (normal vs. attack) and multi-class classification (classifying types of attacks) for network intrusion detection. The experimental results show that feature extraction using VGG-16 outperforms other pre-trained models producing better accuracy, precision, recall, and false alarm rates. 
    more » « less
  2. Volunteer computing uses Internet-connected devices (laptops, PCs, smart devices, etc.), in which their owners volunteer them as storage and computing power resources, has become an essential mechanism for resource management in numerous applications. The growth of the volume and variety of data traffic on the Internet leads to concerns on the robustness of cyberphysical systems especially for critical infrastructures. Therefore, the implementation of an efficient Intrusion Detection System for gathering such sensory data has gained vital importance. In this article, we present a comparative study of Artificial Intelligence (AI)-driven intrusion detection systems for wirelessly connected sensors that track crucial applications. Specifically, we present an in-depth analysis of the use of machine learning, deep learning and reinforcement learning solutions to recognise intrusive behavior in the collected traffic. We evaluate the proposed mechanisms by using KDD’99 as real attack dataset in our simulations. Results present the performance metrics for three different IDSs, namely the Adaptively Supervised and Clustered Hybrid IDS (ASCH-IDS), Restricted Boltzmann Machine-based Clustered IDS (RBC-IDS), and Q-learning based IDS (Q-IDS), to detect malicious behaviors. We also present the performance of different reinforcement learning techniques such as State-Action-Reward-State-Action Learning (SARSA) and the Temporal Difference learning (TD). Through simulations, we show that Q-IDS performs with detection rate while SARSA-IDS and TD-IDS perform at the order of . 
    more » « less
  3. null (Ed.)
    Network intrusion detection systems (NIDSs) play an essential role in the defense of computer networks by identifying a computer networks' unauthorized access and investigating potential security breaches. Traditional NIDSs encounters difficulties to combat newly created sophisticated and unpredictable security attacks. Hence, there is an increasing need for automatic intrusion detection solution that can detect malicious activities more accurately and prevent high false alarm rates (FPR). In this paper, we propose a novel network intrusion detection framework using a deep neural network based on the pretrained VGG-16 architecture. The framework, TL-NID (Transfer Learning for Network Intrusion Detection), is a two-step process where features are extracted in the first step, using VGG-16 pre-trained on ImageNet dataset and in the 2 nd step a deep neural network is applied to the extracted features for classification. We applied TL-NID on NSL-KDD, a benchmark dataset for network intrusion, to evaluate the performance of the proposed framework. The experimental results show that our proposed method can effectively learn from the NSL-KDD dataset with producing a realistic performance in terms of accuracy, precision, recall, and false alarm. This study also aims to motivate security researchers to exploit different state-of-the-art pre-trained models for network intrusion detection problems through valuable knowledge transfer. 
    more » « less
  4. Secure vehicular communication is a critical factor for secure traffic management. Effective security in intelligent transportation systems (ITS) requires effective and timely intrusion detection systems (IDS). In this paper, we consider false data injection attacks and distributed denial-of-service (DDoS) attacks, especially the stealthy DDoS attacks, targeting integrity and availability, respectively, in vehicular ad-hoc networks (VANET). Novel machine learning techniques for intrusion detection and mitigation based on centralized communications through roadside units (RSU) are proposed for the considered attacks. The performance of the proposed methods is evaluated using a traffic simulator and a real traffic dataset. Comparisons with the state-of-the-art solutions clearly demonstrate the superior detection and localization performance of the proposed methods by 78% in the best case and 27% in the worst case, while achieving the same level of false alarm probability. 
    more » « less
  5. With the growing adoption of unmanned aerial vehicles (UAVs) across various domains, the security of their operations is paramount. UAVs, heavily dependent on GPS navigation, are at risk of jamming and spoofing cyberattacks, which can severely jeopardize their performance, safety, and mission integrity. Intrusion detection systems (IDSs) are typically employed as defense mechanisms, often leveraging traditional machine learning techniques. However, these IDSs are susceptible to adversarial attacks that exploit machine learning models by introducing input perturbations. In this work, we propose a novel IDS for UAVs to enhance resilience against such attacks using generative adversarial networks (GAN). We also comprehensively study several evasion-based adversarial attacks and utilize them to compare the performance of the proposed IDS with existing ones. The resilience is achieved by generating synthetic data based on the identified weak points in the IDS and incorporating these adversarial samples in the training process to regularize the learning. The evaluation results demonstrate that the proposed IDS is significantly robust against adversarial machine learning based attacks compared to the state-of-the-art IDSs while maintaining a low false positive rate. 
    more » « less