skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Comparative Study of AI-Based Intrusion Detection Techniques in Critical Infrastructures
Volunteer computing uses Internet-connected devices (laptops, PCs, smart devices, etc.), in which their owners volunteer them as storage and computing power resources, has become an essential mechanism for resource management in numerous applications. The growth of the volume and variety of data traffic on the Internet leads to concerns on the robustness of cyberphysical systems especially for critical infrastructures. Therefore, the implementation of an efficient Intrusion Detection System for gathering such sensory data has gained vital importance. In this article, we present a comparative study of Artificial Intelligence (AI)-driven intrusion detection systems for wirelessly connected sensors that track crucial applications. Specifically, we present an in-depth analysis of the use of machine learning, deep learning and reinforcement learning solutions to recognise intrusive behavior in the collected traffic. We evaluate the proposed mechanisms by using KDD’99 as real attack dataset in our simulations. Results present the performance metrics for three different IDSs, namely the Adaptively Supervised and Clustered Hybrid IDS (ASCH-IDS), Restricted Boltzmann Machine-based Clustered IDS (RBC-IDS), and Q-learning based IDS (Q-IDS), to detect malicious behaviors. We also present the performance of different reinforcement learning techniques such as State-Action-Reward-State-Action Learning (SARSA) and the Temporal Difference learning (TD). Through simulations, we show that Q-IDS performs with detection rate while SARSA-IDS and TD-IDS perform at the order of .  more » « less
Award ID(s):
1915756
PAR ID:
10317935
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Internet Technology
Volume:
21
Issue:
4
ISSN:
1533-5399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the increased accuracy of intrusion detection systems (IDS) in identifying cyberattacks in computer networks and devices connected to the internet, distributed or coordinated attacks can still go undetected or not detected on time. The single vantage point limits the ability of these IDSs to detect such attacks. Due to this reason, there is a need for attack characteristics’ exchange among different IDS nodes. Researchers proposed a cooperative intrusion detection system to share these attack characteristics effectively. This approach was useful; however, the security of the shared data cannot be guaranteed. More specifically, maintaining the integrity and consistency of shared data becomes a significant concern. In this paper, we propose a blockchain-based solution that ensures the integrity and consistency of attack characteristics shared in a cooperative intrusion detection system. The proposed architecture achieves this by detecting and preventing fake features injection and compromised IDS nodes. It also facilitates scalable attack features exchange among IDS nodes, ensures heterogeneous IDS nodes participation, and it is robust to public IDS nodes joining and leaving the network. We evaluate the security analysis and latency. The result shows that the proposed approach detects and prevents compromised IDS nodes, malicious features injection, manipulation, or deletion, and it is also scalable with low latency. 
    more » « less
  2. Secure vehicular communication is a critical factor for secure traffic management. Effective security in intelligent transportation systems (ITS) requires effective and timely intrusion detection systems (IDS). In this paper, we consider false data injection attacks and distributed denial-of-service (DDoS) attacks, especially the stealthy DDoS attacks, targeting integrity and availability, respectively, in vehicular ad-hoc networks (VANET). Novel machine learning techniques for intrusion detection and mitigation based on centralized communications through roadside units (RSU) are proposed for the considered attacks. The performance of the proposed methods is evaluated using a traffic simulator and a real traffic dataset. Comparisons with the state-of-the-art solutions clearly demonstrate the superior detection and localization performance of the proposed methods by 78% in the best case and 27% in the worst case, while achieving the same level of false alarm probability. 
    more » « less
  3. null (Ed.)
    Network intrusion detection systems (IDS) has efficiently identified the profiles of normal network activities, extracted intrusion patterns, and constructed generalized models to evaluate (un)known attacks using a wide range of machine learning approaches. In spite of the effectiveness of machine learning-based IDS, it has been still challenging to reduce high false alarms due to data misclassification. In this paper, by using multiple decision mechanisms, we propose a new classification method to identify misclassified data and then to classify them into three different classes, called a malicious, benign, and ambiguous dataset. In other words, the ambiguous dataset contains a majority of the misclassified dataset and is thus the most informative for improving the model and anomaly detection because of the lack of confidence for the data classification in the model. We evaluate our approach with the recent real-world network traffic data, Kyoto2006+ datasets, and show that the ambiguous dataset contains 77.2% of the previously misclassified data. Re-evaluating the ambiguous dataset effectively reduces the false prediction rate with minimal overhead and improves accuracy by 15%. 
    more » « less
  4. Traffic classification has been studied for two decades and applied to a wide range of applications from QoS provisioning and billing in ISPs to security-related applications in firewalls and intrusion detection systems. Port-based, data packet inspection, and classical machine learning methods have been used extensively in the past, but their accuracy have been declined due to the dramatic changes in the Internet traffic, particularly the increase in encrypted traffic. With the proliferation of deep learning methods, researchers have recently investigated these methods for traffic classification task and reported high accuracy. In this article, we introduce a general framework for deep-learning-based traffic classification. We present commonly used deep learning methods and their application in traffic classification tasks. Then, we discuss open 
    more » « less
  5. Sural, Shamik; Lu, Haibing (Ed.)
    Modern network infrastructures are in a constant state of transformation, in large part due to the exponential growth of Internet of Things (IoT) devices. The unique properties of IoT-connected networks, such as heterogeneity and non-standardized protocol, have created critical security holes and network mismanagement. In this paper we propose a new measurement tool, Intrinsic Dimensionality (ID), to aid in analyzing and classifying network traffic. A proxy for dataset complexity, ID can be used to understand the network as a whole, aiding in tasks such as network management and provisioning. We use ID to evaluate several modern network datasets empirically. Showing that, for network and device-level data, generated using IoT methodologies, the ID of the data fits into a low dimensional representation. Additionally we explore network data complexity at the sample level using Local Intrinsic Dimensionality (LID) and propose a novel unsupervised intrusion detection technique, the Weighted Hamming LID Estimator. We show that the algortihm performs better on IoT network datasets than the Autoencoder, KNN, and Isolation Forests. Finally, we propose the use of synthetic data as an additional tool for both network data measurement as well as intrusion detection. Synthetically generated data can aid in building a more robust network dataset, while also helping in downstream tasks such as machine learning based intrusion detection models. We explore the effects of synthetic data on ID measurements, as well as its role in intrusion detection systems. 
    more » « less