- Award ID(s):
- 1909516
- Publication Date:
- NSF-PAR ID:
- 10358628
- Journal Name:
- Empirical software engineering
- Volume:
- 27
- Issue:
- 26
- ISSN:
- 1573-7616
- Sponsoring Org:
- National Science Foundation
More Like this
-
Malicious software (malware) is a major cyber threat that has to be tackled with Machine Learning (ML) techniques because millions of new malware examples are injected into cyberspace on a daily basis. However, ML is vulnerable to attacks known as adversarial examples. In this article, we survey and systematize the field of Adversarial Malware Detection (AMD) through the lens of a unified conceptual framework of assumptions, attacks, defenses, and security properties. This not only leads us to map attacks and defenses to partial order structures, but also allows us to clearly describe the attack-defense arms race in the AMD context. We draw a number of insights, including: knowing the defender’s feature set is critical to the success of transfer attacks; the effectiveness of practical evasion attacks largely depends on the attacker’s freedom in conducting manipulations in the problem space; knowing the attacker’s manipulation set is critical to the defender’s success; and the effectiveness of adversarial training depends on the defender’s capability in identifying the most powerful attack. We also discuss a number of future research directions.
-
Machine learning (ML) techniques are increasingly common in security applications, such as malware and intrusion detection. However, ML models are often susceptible to evasion attacks, in which an adversary makes changes to the input (such as malware) in order to avoid being detected. A conventional approach to evaluate ML robustness to such attacks, as well as to design robust ML, is by considering simplified feature-space models of attacks, where the attacker changes ML features directly to effect evasion, while minimizing or constraining the magnitude of this change. We investigate the effectiveness of this approach to designing robust ML in the face of attacks that can be realized in actual malware (realizable attacks). We demonstrate that in the context of structure-based PDF malware detection, such techniques appear to have limited effectiveness, but they are effective with content-based detectors. In either case, we show that augmenting the feature space models with conserved features (those that cannot be unilaterally modified without compromising malicious functionality) significantly improves performance. Finally, we show that feature space models enable generalized robustness when faced with a variety of realizable attacks, as compared to classifiers which are tuned to be robust to a specific realizable attack.
-
Recent self-propagating malware (SPM) campaigns compromised hundred of thousands of victim machines on the Internet. It is challenging to detect these attacks in their early stages, as adversaries utilize common network services, use novel techniques, and can evade existing detection mechanisms. We propose PORTFILER (PORT-Level Network Traffic ProFILER), a new machine learning system applied to network traffic for detecting SPM attacks. PORTFILER extracts port-level features from the Zeek connection logs collected at a border of a monitored network, applies anomaly detection techniques to identify suspicious events, and ranks the alerts across ports for investigation by the Security Operations Center (SOC). We propose a novel ensemble methodology for aggregating individual models in PORTFILER that increases resilience against several evasion strategies compared to standard ML baselines. We extensively evaluate PORTFILER on traffic collected from two university networks, and show that it can detect SPM attacks with different patterns, such as WannaCry and Mirai, and performs well under evasion. Ranking across ports achieves precision over 0.94 and false positive rates below 8 × 10−4 in the top 100 highly ranked alerts. When deployed on the university networks, PORTFILER detected anomalous SPM-like activity on one of the campus networks, confirmed by the university SOCmore »
-
Dong, Yinpeng ; Pang, Tianyu ; Yang, Xiao ; Wong, Eric ; Kolter, Zico ; He, Yuan (Ed.)Current machine learning models suffer from evasion attacks (i.e., adversarial examples) raising concerns in security-sensitive settings such as autonomous vehicles. While many countermeasures may look promising, only a few withstand rigorous evaluation. Recently, defenses using random transformations (RT) have shown impressive results, particularly BaRT (Raff et al. 2019) on ImageNet. However, this type of defense has not been rigorously evaluated, leaving its robustness properties poorly understood. The stochasticity of these models also makes evaluation more challenging and many proposed attacks on deterministic models inapplicable. First, we show that the BPDA attack (Athalye, Carlini, and Wagner 2018) used in BaRT’s evaluation is ineffective and likely overestimates its robustness. We then attempt to construct the strongest possible RT defense through the informed selection of transformations and Bayesian optimization for tuning their parameters. Furthermore, we create the strongest possible attack to evaluate our RT defense. Our new attack vastly outperforms the baseline, reducing the accuracy by 83% compared to the 19% reduction by the commonly used EoT attack (4.3× improvement). Our result indicates that the RT defense on Imagenette dataset (ten-class subset of ImageNet) is not robust against adversarial examples. Extending the study further, we use our new attack to adversarially train RTmore »
-
Abstract Deep neural networks (DNNs) are widely used to handle many difficult tasks, such as image classification and malware detection, and achieve outstanding performance. However, recent studies on adversarial examples, which have maliciously undetectable perturbations added to their original samples that are indistinguishable by human eyes but mislead the machine learning approaches, show that machine learning models are vulnerable to security attacks. Though various adversarial retraining techniques have been developed in the past few years, none of them is scalable. In this paper, we propose a new iterative adversarial retraining approach to robustify the model and to reduce the effectiveness of adversarial inputs on DNN models. The proposed method retrains the model with both Gaussian noise augmentation and adversarial generation techniques for better generalization. Furthermore, the ensemble model is utilized during the testing phase in order to increase the robust test accuracy. The results from our extensive experiments demonstrate that the proposed approach increases the robustness of the DNN model against various adversarial attacks, specifically, fast gradient sign attack, Carlini and Wagner (C&W) attack, Projected Gradient Descent (PGD) attack, and DeepFool attack. To be precise, the robust classifier obtained by our proposed approach can maintain a performance accuracy of 99%more »