skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Omni: automated ensemble with unexpected models against adversarial evasion attack
Machine learning-based security detection models have become prevalent in modern malware and intrusion detection systems. However, previous studies show that such models are susceptible to adversarial evasion attacks. In this type of attack, inputs (i.e., adversarial examples) are specially crafted by intelligent malicious adversaries, with the aim of being misclassified by existing state-of-the-art models (e.g., deep neural networks). Once the attackers can fool a classifier to think that a malicious input is actually benign, they can render a machine learning-based malware or intrusion detection system ineffective. Objective To help security practitioners and researchers build a more robust model against non-adaptive, white-box and non-targeted adversarial evasion attacks through the idea of ensemble model. Method We propose an approach called Omni, the main idea of which is to explore methods that create an ensemble of “unexpected models”; i.e., models whose control hyperparameters have a large distance to the hyperparameters of an adversary’s target model, with which we then make an optimized weighted ensemble prediction. Results In studies with five types of adversarial evasion attacks (FGSM, BIM, JSMA, DeepFool and Carlini-Wagner) on five security datasets (NSL-KDD, CIC-IDS-2017, CSE-CIC-IDS2018, CICAndMal2017 and the Contagio PDF dataset), we show Omni is a promising approach as a defense strategy against adversarial attacks when compared with other baseline treatments Conclusions When employing ensemble defense against adversarial evasion attacks, we suggest to create ensemble with unexpected models that are distant from the attacker’s expected model (i.e., target model) through methods such as hyperparameter optimization.  more » « less
Award ID(s):
1909516
PAR ID:
10358628
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Empirical software engineering
Volume:
27
Issue:
26
ISSN:
1573-7616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With machine learning techniques widely used to automate Android malware detection, it is important to investigate the robustness of these methods against evasion attacks. A recent work has proposed a novel problem-space attack on Android malware classifiers, where adversarial examples are generated by transforming Android malware samples while satisfying practical constraints. Aimed to address its limitations, we propose a new attack called EAGLE (Evasion Attacks Guided by Local Explanations), whose key idea is to leverage local explanations to guide the search for adversarial examples. We present a generic algorithmic framework for EAGLE attacks, which can be customized with specific feature increase and decrease operations to evade Android malware classifiers trained on different types of count features. We overcome practical challenges in implementing these operations for four different types of Android malware classifiers. Using two Android malware datasets, our results show that EAGLE attacks can be highly effective at finding functionable adversarial examples. We study the attack transferrability of malware variants created by EAGLE attacks across classifiers built with different classification models or trained on different types of count features. Our research further demonstrates that ensemble classifiers trained from multiple types of count features are not immune to EAGLE attacks. We also discuss possible defense mechanisms against EAGLE attacks. 
    more » « less
  2. Malicious software (malware) is a major cyber threat that has to be tackled with Machine Learning (ML) techniques because millions of new malware examples are injected into cyberspace on a daily basis. However, ML is vulnerable to attacks known as adversarial examples. In this article, we survey and systematize the field of Adversarial Malware Detection (AMD) through the lens of a unified conceptual framework of assumptions, attacks, defenses, and security properties. This not only leads us to map attacks and defenses to partial order structures, but also allows us to clearly describe the attack-defense arms race in the AMD context. We draw a number of insights, including: knowing the defender’s feature set is critical to the success of transfer attacks; the effectiveness of practical evasion attacks largely depends on the attacker’s freedom in conducting manipulations in the problem space; knowing the attacker’s manipulation set is critical to the defender’s success; and the effectiveness of adversarial training depends on the defender’s capability in identifying the most powerful attack. We also discuss a number of future research directions. 
    more » « less
  3. Machine learning (ML) techniques are increasingly common in security applications, such as malware and intrusion detection. However, ML models are often susceptible to evasion attacks, in which an adversary makes changes to the input (such as malware) in order to avoid being detected. A conventional approach to evaluate ML robustness to such attacks, as well as to design robust ML, is by considering simplified feature-space models of attacks, where the attacker changes ML features directly to effect evasion, while minimizing or constraining the magnitude of this change. We investigate the effectiveness of this approach to designing robust ML in the face of attacks that can be realized in actual malware (realizable attacks). We demonstrate that in the context of structure-based PDF malware detection, such techniques appear to have limited effectiveness, but they are effective with content-based detectors. In either case, we show that augmenting the feature space models with conserved features (those that cannot be unilaterally modified without compromising malicious functionality) significantly improves performance. Finally, we show that feature space models enable generalized robustness when faced with a variety of realizable attacks, as compared to classifiers which are tuned to be robust to a specific realizable attack. 
    more » « less
  4. With the growing adoption of unmanned aerial vehicles (UAVs) across various domains, the security of their operations is paramount. UAVs, heavily dependent on GPS navigation, are at risk of jamming and spoofing cyberattacks, which can severely jeopardize their performance, safety, and mission integrity. Intrusion detection systems (IDSs) are typically employed as defense mechanisms, often leveraging traditional machine learning techniques. However, these IDSs are susceptible to adversarial attacks that exploit machine learning models by introducing input perturbations. In this work, we propose a novel IDS for UAVs to enhance resilience against such attacks using generative adversarial networks (GAN). We also comprehensively study several evasion-based adversarial attacks and utilize them to compare the performance of the proposed IDS with existing ones. The resilience is achieved by generating synthetic data based on the identified weak points in the IDS and incorporating these adversarial samples in the training process to regularize the learning. The evaluation results demonstrate that the proposed IDS is significantly robust against adversarial machine learning based attacks compared to the state-of-the-art IDSs while maintaining a low false positive rate. 
    more » « less
  5. Internet of Things (IoT) cyber threats, exemplified by jackware and crypto mining, underscore the vulnerability of IoT devices. Due to the multi-step nature of many attacks, early detection is vital for a swift response and preventing malware propagation. However, accurately detecting early-stage attacks is challenging, as attackers employ stealthy, zero-day, or adversarial machine learning to evade detection. To enhance security, we propose ARIoTEDef, an Adversarially Robust IoT Early Defense system, which identifies early-stage infections and evolves autonomously. It models multi-stage attacks based on a cyber kill chain and maintains stage-specific detectors. When anomalies in the later action stage emerge, the system retroactively analyzes event logs using an attention-based sequence-to-sequence model to identify early infections. Then, the infection detector is updated with information about the identified infections. We have evaluated ARIoTEDef against multi-stage attacks, such as the Mirai botnet. Results show that the infection detector’s average F1 score increases from 0.31 to 0.87 after one evolution round. We have also conducted an extensive analysis of ARIoTEDef against adversarial evasion attacks. Our results show that ARIoTEDef is robust and benefits from multiple rounds of evolution. 
    more » « less