Abstract Placing new sequences onto reference phylogenies is increasingly used for analyzing environmental samples, especially microbiomes. Existing placement methods assume that query sequences have evolved under specific models directly on the reference phylogeny. For example, they assume single-gene data (e.g., 16S rRNA amplicons) have evolved under the GTR model on a gene tree. Placement, however, often has a more ambitious goal: extending a (genome-wide) species tree given data from individual genes without knowing the evolutionary model. Addressing this challenging problem requires new directions. Here, we introduce Deep-learning Enabled Phylogenetic Placement (DEPP), an algorithm that learns to extend species trees using single genes without prespecified models. In simulations and on real data, we show that DEPP can match the accuracy of model-based methods without any prior knowledge of the model. We also show that DEPP can update the multilocus microbial tree-of-life with single genes with high accuracy. We further demonstrate that DEPP can combine 16S and metagenomic data onto a single tree, enabling community structure analyses that take advantage of both sources of data. [Deep learning; gene tree discordance; metagenomics; microbiome analyses; neural networks; phylogenetic placement.] 
                        more » 
                        « less   
                    
                            
                            Genome Sequencing of Paecilomyces Penicillatus Provides Insights into Its Phylogenetic Placement and Mycoparasitism Mechanisms on Morel Mushrooms
                        
                    
    
            Morels (Morchella spp.) are popular edible fungi with significant economic and scientific value. However, white mold disease, caused by Paecilomyces penicillatus, can reduce morel yield by up to 80% in the main cultivation area in China. Paecilomyces is a polyphyletic genus and the exact phylogenetic placement of P. penicillatus is currently still unclear. Here, we obtained the first high-quality genome sequence of P. penicillatus generated through the single-molecule real-time (SMRT) sequencing platform. The assembled draft genome of P. penicillatus was 40.2 Mb, had an N50 value of 2.6 Mb and encoded 9454 genes. Phylogenetic analysis of single-copy orthologous genes revealed that P. penicillatus is in Hypocreales and closely related to Hypocreaceae, which includes several genera exhibiting a mycoparasitic lifestyle. CAZymes analysis demonstrated that P. penicillatus encodes a large number of fungal cell wall degradation enzymes. We identified many gene clusters involved in the production of secondary metabolites known to exhibit antifungal, antibacterial, or insecticidal activities. We further demonstrated through dual culture assays that P. penicillatus secretes certain soluble compounds that are inhibitory to the mycelial growth of Morchella sextelata. This study provides insights into the correct phylogenetic placement of P. penicillatus and the molecular mechanisms that underlie P. penicillatus pathogenesis. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1946445
- PAR ID:
- 10205674
- Date Published:
- Journal Name:
- Pathogens
- Volume:
- 9
- Issue:
- 10
- ISSN:
- 2076-0817
- Page Range / eLocation ID:
- 834
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Cordaux, Richard (Ed.)Abstract Crocodilians are an economically, culturally, and biologically important group. To improve researchers’ ability to study genome structure, evolution, and gene regulation in the clade, we generated a high-quality de novo genome assembly of the saltwater crocodile, Crocodylus porosus, from Illumina short read data from genomic libraries and in vitro proximity-ligation libraries. The assembled genome is 2,123.5 Mb, with N50 scaffold size of 17.7 Mb and N90 scaffold size of 3.8 Mb. We then annotated this new assembly, increasing the number of annotated genes by 74%. In total, 96% of 23,242 annotated genes were associated with a functional protein domain. Furthermore, multiple noncoding functional regions and mappable genetic markers were identified. Upon analysis and overlapping the results of branch length estimation and site selection tests for detecting potential selection, we found 16 putative genes under positive selection in crocodilians, 10 in C. porosus and 6 in Alligator mississippiensis. The annotated C. porosus genome will serve as an important platform for osmoregulatory, physiological, and sex determination studies, as well as an important reference in investigating the phylogenetic relationships of crocodilians, birds, and other tetrapods.more » « less
- 
            Abstract The brown bear (Ursus arctos) is the second largest and most widespread extant terrestrial carnivore on Earth and has recently emerged as a medical model for human metabolic diseases. Here, we report a fully phased chromosome-level assembly of a male North American brown bear built by combining Pacific Biosciences (PacBio) HiFi data and publicly available Hi-C data. The final genome size is 2.47 Gigabases (Gb) with a scaffold and contig N50 length of 70.08 and 43.94 Megabases (Mb), respectively. Benchmarking Universal Single-Copy Ortholog (BUSCO) analysis revealed that 94.5% of single copy orthologs from Mammalia were present in the genome (the highest of any ursid genome to date). Repetitive elements accounted for 44.48% of the genome and a total of 20,480 protein coding genes were identified. Based on whole genome alignment to the polar bear, the brown bear is highly syntenic with the polar bear, and our phylogenetic analysis of 7,246 single-copy orthologs supports the currently proposed species tree for Ursidae. This highly contiguous genome assembly will support future research on both the evolutionary history of the bear family and the physiological mechanisms behind hibernation, the latter of which has broad medical implications.more » « less
- 
            Mallarino, R (Ed.)Abstract Several species of sacoglossan sea slugs possess the incredible ability to sequester chloroplasts from the algae they consume. These “photosynthetic animals” incorporate stolen chloroplasts, called kleptoplasts, into the epithelial cells of tubules that extend from their digestive tracts throughout their bodies. The mechanism by which these slugs maintain functioning kleptoplasts in the absence of an algal nuclear genome is unknown. Here, we report a draft genome of the sacoglossan slug Elysia crispata morphotype clarki, a morphotype native to the Florida Keys that can retain photosynthetically active kleptoplasts for several months without feeding. We used a combination of Oxford Nanopore Technologies long reads and Illumina short reads to produce a 786-Mb assembly (N50 = 0.459 Mb) containing 68,514 predicted protein-coding genes. A phylogenetic analysis found no evidence of horizontal acquisition of genes from algae. We performed gene family and gene expression analyses to identify E. crispata genes unique to kleptoplast-containing slugs that were more highly expressed in fed versus unfed developmental life stages. Consistent with analyses in other kleptoplastic slugs, our investigation suggests that genes encoding lectin carbohydrate-binding proteins and those involved in regulation of reactive oxygen species and immunity may play a role in kleptoplast retention. Lastly, we identified four polyketide synthase genes that could potentially encode proteins producing UV- and oxidation-blocking compounds in slug cell membranes. The genome of E. crispata is a quality resource that provides potential targets for functional analyses and enables further investigation into the evolution and mechanisms of kleptoplasty in animals.more » « less
- 
            Neoclytus acuminatus acuminatus, the red-headed ash borer, is a wood-boring longhorn beetle (Cerambycidae: Cerambycinae) native to North America and introduced in Eurasia and South America. Its larvae develop in dying or recently dead hardwood trees, including ecologically and economically significant species of ash, hickory, and oak. We sequenced, assembled, and annotated the genome of a female N. acuminatus and compared it to the publicly available genomes of other cerambycid species. The 508 Mb N. acuminatus genome assembly spanned 20 contigs (19 nuclear + 1 mitochondrial), with an N50 of 52.59 Mb and largest contig of 61.20 Mb. A moderately high fraction of the genome (62.63%) comprised repetitive sequences, with nearly all (99.4%) expected single-copy orthologous genes (BUSCOs) present and fully assembled. We identified 2 contigs as fragments of the N. acuminatus sex chromosome. Genome annotation identified 12,899 genes, including 109 putative horizontally transferred loci. Synteny analysis identified well-conserved blocks of collinearity between the N. acuminatus genome and other Cerambycidae. The genome contains a similar number of genes encoding putative plant cell wall degrading enzymes as other Cerambycidae. The N. acuminatus genome provides new insights into genome evolution in the family Cerambycidae, known for its rich diversity of xylophagous species, and provides a new viewpoint from which to study the evolution and genomic basis of traits such as wood-feeding and olfaction in beetles and other insects.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    