skip to main content


Title: A User Study of a Wearable System to Enhance Bystanders’ Facial Privacy
The privacy of users and information are becoming increasingly important with the growth and pervasive use of mobile devices such as wearables, mobile phones, drones, and Internet of Things (IoT) devices. Today many of these mobile devices are equipped with cameras which enable users to take pictures and record videos anytime they need to do so. In many such cases, bystanders’ privacy is not a concern, and as a result, audio and video of bystanders are often captured without their consent. We present results from a user study in which 21 participants were asked to use a wearable system called FacePET developed to enhance bystanders’ facial privacy by providing a way for bystanders to protect their own privacy rather than relying on external systems for protection. While past works in the literature focused on privacy perceptions of bystanders when photographed in public/shared spaces, there has not been research with a focus on user perceptions of bystander-based wearable devices to enhance privacy. Thus, in this work, we focus on user perceptions of the FacePET device and/or similar wearables to enhance bystanders’ facial privacy. In our study, we found that 16 participants would use FacePET or similar devices to enhance their facial privacy, and 17 participants agreed that if smart glasses had features to conceal users’ identities, it would allow them to become more popular.  more » « less
Award ID(s):
1950416
NSF-PAR ID:
10205752
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IoT
Volume:
1
Issue:
2
ISSN:
2624-831X
Page Range / eLocation ID:
198 to 217
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Mobile health (mHealth) wearable devices are increasingly being adopted by individuals to help manage and monitor physiological signals. However, the current state of wearables does not consider the needs of racially minoritized low–socioeconomic status (SES) communities regarding usability, accessibility, and price. This is a critical issue that necessitates immediate attention and resolution. Objective This study’s aims were 3-fold, to (1) understand how members of minoritized low-SES communities perceive current mHealth wearable devices, (2) identify the barriers and facilitators toward adoption, and (3) articulate design requirements for future wearable devices to enable equitable access for these communities. Methods We performed semistructured interviews with low-SES Hispanic or Latine adults (N=19) from 2 metropolitan cities in the Midwest and West Coast of the United States. Participants were asked questions about how they perceive wearables, what are the current benefits and barriers toward use, and what features they would like to see in future wearable devices. Common themes were identified and analyzed through an exploratory qualitative approach. Results Through qualitative analysis, we identified 4 main themes. Participants’ perceptions of wearable devices were strongly influenced by their COVID-19 experiences. Hence, the first theme was related to the impact of COVID-19 on the community, and how this resulted in a significant increase in interest in wearables. The second theme highlights the challenges faced in obtaining adequate health resources and how this further motivated participants’ interest in health wearables. The third theme focuses on a general distrust in health care infrastructure and systems and how these challenges are motivating a need for wearables. Lastly, participants emphasized the pressing need for community-driven design of wearable technologies. Conclusions The findings from this study reveal that participants from underserved communities are showing emerging interest in using health wearables due to the COVID-19 pandemic and health care access issues. Yet, the needs of these individuals have been excluded from the design and development of current devices. 
    more » « less
  2. Wearable devices are a popular class of portable ubiquitous technology. These devices are available in a variety of forms, ranging from smart glasses to smart rings. The fact that smart wearable devices are attached to the body makes them particularly suitable to be integrated into people’s daily lives. Thus, we propose that wearables can be particularly useful to help people make sense of different kinds of information and situations in the course of their everyday activities, in other words, to help support learning in everyday life. Further, different forms of wearables have different affordances leading to varying perceptions and preferences, depending on the purpose and context of use. While there is research on wearable use in the learning context, it is mostly limited to specific settings and usually only explores wearable use for a specific task. This paper presents an online survey with 70 participants conducted to understand users’ preferences and perceptions of how wearables may be used to support learning in their everyday life. Multiple ways of use of wearable for learning were proposed. Asking for information was the most common learning-oriented use. The smartwatch/wristband, followed by the smart glasses, was the most preferred wearable form factor to support learning. Our survey results also showed that the choice of wearable type to use for learning is associated with prior wearable experience and that perceived social influence of wearables decreases significantly with gain in the experience with a fitness tracker. Overall, our study indicates that wearable devices have untapped potential to be used for learning in daily life and different form factors are perceived to afford different functions and used for different purposes. 
    more » « less
  3. Pervasive sensing has enabled continuous monitoring of user physiological state through mobile and wearable devices, allowing for large scale user studies to be conducted, such as those found in mHealth. However, current mHealth studies are limited in their ability of allowing users to express their privacy preferences on the data they share across multiple entities involved in a research study. In this work, we present mPolicy, a privacy policy language for study participants to express the context-aware and data-handling policies needed for mHealth. In addition, we provide a privacy-adaptive policy creation mechanism for byproduct data (such as motion inferences). Lastly, we create a software library called privLib for implementing parsing, enforcement, and policy creation on byproduct data for mPolicy. We evaluate the latency overhead of these operations, and discuss future improvements for scaling to realistic mHealth scenarios. 
    more » « less
  4. Hara, T. ; Yamaguchi, H. (Ed.)
    Prevalent wearables (e.g., smartwatches and activity trackers) demand high secure measures to protect users' private information, such as personal contacts, bank accounts, etc. While existing two-factor authentication methods can enhance traditional user authentication, they are not convenient as they require participations from users. Recently, manufacturing imperfections in hardware devices (e.g., accelerometers and WiFi interface) have been utilized for low-effort two-factor authentications. However, these methods rely on fixed device credentials that would require users to replace their devices once the device credentials are stolen. In this work, we develop a novel device authentication system, WatchID, that can identify a user's wearable using its vibration-based device credentials. Our system exploits readily available vibration motors and accelerometers in wearables to establish a vibration communication channel to capture wearables' unique vibration characteristics. Compared to existing methods, our vibration-based device credentials are reprogrammable and easy to use. We develop a series of data processing methods to mitigate the impact of noises and body movements. A lightweight convolutional neural network is developed for feature extraction and device authentication. Extensive experimental results using five smartwatches show that WatchID can achieve an average precision and recall of 98% and 94% respectively in various attacking scenarios. 
    more » « less
  5. null (Ed.)
    The proliferation of the Internet of Things (IoT) has started transforming our lifestyle through automation of home appliances. However, there are users who are hesitant to adopt IoT devices due to various privacy and security concerns. In this paper, we elicit peoples’ attitude and concerns towards adopting IoT devices. We conduct an online survey and collect responses from 232 participants from three different geographic regions (United States, Europe, and India); the participants consist of both adopters and non-adopters of IoT devices. Through data analysis, we determine that there are both similarities and differences in perceptions and concerns between adopters and non-adopters. For example, even though IoT and non-IoT users share similar security and privacy concerns, IoT users are more comfortable using IoT devices in private settings compared to non-IoT users. Furthermore, when comparing users’ attitude and concerns across different geographic regions, we found similarities between participants from the US and Europe, yet participants from India showcased contrasting behavior. For instance, we found that participants from India were more trusting in their government to properly protect consumer data and were more comfortable using IoT devices in a variety of public settings, compared to participants from the US and Europe. Based on our findings, we provide recommendations to reduce users’ concerns in adopting IoT devices, and thereby enhance user trust towards adopting IoT devices. 
    more » « less