skip to main content


Title: The Polynomial Method Strikes Back: Tight Quantum Query Bounds via Dual Polynomials
The approximate degree of a Boolean function f is the least degree of a real polynomial that approximates f pointwise to error at most 1/3. The approximate degree of f is known to be a lower bound on the quantum query complexity of f (Beals et al., FOCS 1998 and J. ACM 2001). We find tight or nearly tight bounds on the approximate degree and quantum query complexities of several basic functions. Specifically, we show the following. k-Distinctness: For any constant k, the approximate degree and quantum query complexity of the k-distinctness function is Ω(n3/4−1/(2k)). This is nearly tight for large k, as Belovs (FOCS 2012) has shown that for any constant k, the approximate degree and quantum query complexity of k-distinctness is O(n3/4−1/(2k+2−4)). Image size testing: The approximate degree and quantum query complexity of testing the size of the image of a function [n]→[n] is Ω~(n1/2). This proves a conjecture of Ambainis et al. (SODA 2016), and it implies tight lower bounds on the approximate degree and quantum query complexity of the following natural problems. k-Junta testing: A tight Ω~(k1/2) lower bound for k-junta testing, answering the main open question of Ambainis et al. (SODA 2016). Statistical distance from uniform: A tight Ω~(n1/2) lower bound for approximating the statistical distance of a distribution from uniform, answering the main question left open by Bravyi et al. (STACS 2010 and IEEE Trans. Inf. Theory 2011). Shannon entropy: A tight Ω~(n1/2) lower bound for approximating Shannon entropy up to a certain additive constant, answering a question of Li and Wu (2017). Surjectivity: The approximate degree of the surjectivity function is Ω~(n3/4). The best prior lower bound was Ω(n2/3). Our result matches an upper bound of O~(n3/4) due to Sherstov (STOC 2018), which we reprove using different techniques. The quantum query complexity of this function is known to be Θ(n) (Beame and Machmouchi, Quantum Inf. Comput. 2012 and Sherstov, FOCS 2015). Our upper bound for surjectivity introduces new techniques for approximating Boolean functions by low-degree polynomials. Our lower bounds are proved by significantly refining techniques recently introduced by Bun and Thaler (FOCS 2017).  more » « less
Award ID(s):
1947889
NSF-PAR ID:
10205756
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Theory of computing
Volume:
16
Issue:
2020
ISSN:
1557-2862
Page Range / eLocation ID:
1-72
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We give new quantum algorithms for evaluating composed functions whose inputs may be shared between bottom-level gates. Let f be an m -bit Boolean function and consider an n -bit function F obtained by applying f to conjunctions of possibly overlapping subsets of n variables. If f has quantum query complexity Q ( f ) , we give an algorithm for evaluating F using O ~ ( Q ( f ) ⋅ n ) quantum queries. This improves on the bound of O ( Q ( f ) ⋅ n ) that follows by treating each conjunction independently, and our bound is tight for worst-case choices of f . Using completely different techniques, we prove a similar tight composition theorem for the approximate degree of f .By recursively applying our composition theorems, we obtain a nearly optimal O ~ ( n 1 − 2 − d ) upper bound on the quantum query complexity and approximate degree of linear-size depth- d AC 0 circuits. As a consequence, such circuits can be PAC learned in subexponential time, even in the challenging agnostic setting. Prior to our work, a subexponential-time algorithm was not known even for linear-size depth-3 AC 0 circuits.As an additional consequence, we show that AC 0 ∘ ⊕ circuits of depth d + 1 require size Ω ~ ( n 1 / ( 1 − 2 − d ) ) ≥ ω ( n 1 + 2 − d ) to compute the Inner Product function even on average. The previous best size lower bound was Ω ( n 1 + 4 − ( d + 1 ) ) and only held in the worst case (Cheraghchi et al., JCSS 2018). 
    more » « less
  2. We present a new technique for efficiently removing almost all short cycles in a graph without unintentionally removing its triangles. Consequently, triangle finding problems do not become easy even in almost k-cycle free graphs, for any constant k≥ 4. Triangle finding is at the base of many conditional lower bounds in P, mainly for distance computation problems, and the existence of many 4- or 5-cycles in a worst-case instance had been the obstacle towards resolving major open questions. Hardness of approximation: Are there distance oracles with m1+o(1) preprocessing time and mo(1) query time that achieve a constant approximation? Existing algorithms with such desirable time bounds only achieve super-constant approximation factors, while only 3− factors were conditionally ruled out (Pătraşcu, Roditty, and Thorup; FOCS 2012). We prove that no O(1) approximations are possible, assuming the 3-SUM or APSP conjectures. In particular, we prove that k-approximations require Ω(m1+1/ck) time, which is tight up to the constant c. The lower bound holds even for the offline version where we are given the queries in advance, and extends to other problems such as dynamic shortest paths. The 4-Cycle problem: An infamous open question in fine-grained complexity is to establish any surprising consequences from a subquadratic or even linear-time algorithm for detecting a 4-cycle in a graph. This is arguably one of the simplest problems without a near-linear time algorithm nor a conditional lower bound. We prove that Ω(m1.1194) time is needed for k-cycle detection for all k≥ 4, unless we can detect a triangle in √n-degree graphs in O(n2−δ) time; a breakthrough that is not known to follow even from optimal matrix multiplication algorithms. 
    more » « less
  3. We design a nonadaptive algorithm that, given a Boolean function f: {0, 1}^n → {0, 1} which is α-far from monotone, makes poly(n, 1/α) queries and returns an estimate that, with high probability, is an O-tilde(\sqrt{n})-approximation to the distance of f to monotonicity. Furthermore, we show that for any constant k > 0, approximating the distance to monotonicity up to n^(1/2−k)-factor requires 2^{n^k} nonadaptive queries, thereby ruling out a poly(n, 1/α)-query nonadaptive algorithm for such approximations. This answers a question of Seshadhri (Property Testing Review, 2014) for the case of nonadaptive algorithms. Approximating the distance to a property is closely related to tolerantly testing that property. Our lower bound stands in contrast to standard (non-tolerant) testing of monotonicity that can be done nonadaptively with O-tilde(n/ε^2) queries. We obtain our lower bound by proving an analogous bound for erasure-resilient testers. An α-erasure-resilient tester for a desired property gets oracle access to a function that has at most an α fraction of values erased. The tester has to accept (with probability at least 2/3) if the erasures can be filled in to ensure that the resulting function has the property and to reject (with probability at least 2/3) if every completion of erasures results in a function that is ε-far from having the property. Our method yields the same lower bounds for unateness and being a k-junta. These lower bounds improve exponentially on the existing lower bounds for these properties. 
    more » « less
  4. Fawzi, Omar ; Walter, Michael (Ed.)
    The approximate degree of a Boolean function is the minimum degree of real polynomial that approximates it pointwise. For any Boolean function, its approximate degree serves as a lower bound on its quantum query complexity, and generically lifts to a quantum communication lower bound for a related function. We introduce a framework for proving approximate degree lower bounds for certain oracle identification problems, where the goal is to recover a hidden binary string x ∈ {0, 1}ⁿ given possibly non-standard oracle access to it. Our lower bounds apply to decision versions of these problems, where the goal is to compute the parity of x. We apply our framework to the ordered search and hidden string problems, proving nearly tight approximate degree lower bounds of Ω(n/log² n) for each. These lower bounds generalize to the weakly unbounded error setting, giving a new quantum query lower bound for the hidden string problem in this regime. Our lower bounds are driven by randomized communication upper bounds for the greater-than and equality functions. 
    more » « less
  5. In this paper, we consider two fundamental cut approximation problems on large graphs. We prove new lower bounds for both problems that are optimal up to logarithmic factors. The first problem is approximating cuts in balanced directed graphs, where the goal is to build a data structure to provide a $(1 \pm \epsilon)$-estimation of the cut values of a graph on $n$ vertices. For this problem, there are tight bounds for undirected graphs, but for directed graphs, such a data structure requires $\Omega(n^2)$ bits even for constant $\epsilon$. To cope with this, recent works consider $\beta$-balanced graphs, meaning that for every directed cut, the total weight of edges in one direction is at most $\beta$ times the total weight in the other direction. We consider the for-each model, where the goal is to approximate a fixed cut with high probability, and the for-all model, where the data structure must simultaneously preserve all cuts. We improve the previous $\Omega(n \sqrt{\beta/\epsilon})$ lower bound in the for-each model to $\tilde\Omega(n \sqrt{\beta}/\epsilon)$ and we improve the previous $\Omega(n \beta/\epsilon)$ lower bound in the for-all model to $\Omega(n \beta/\epsilon^2)$. This resolves the main open questions of (Cen et al., ICALP, 2021). The second problem is approximating the global minimum cut in the local query model where we can only access the graph through degree, edge, and adjacency queries. We prove an $\Omega(\min\{m, \frac{m}{\epsilon^2 k}\})$ lower bound for this problem, which improves the previous $\Omega(\frac{m}{k})$ lower bound, where $m$ is the number of edges of the graph, $k$ is the minimum cut size, and we seek a $(1+\epsilon)$-approximation. In addition, we observe that existing upper bounds with minor modifications match our lower bound up to logarithmic factors. 
    more » « less