Biphilic surfaces having spatially distinct wetting have the potential to enable a plethora of applications ranging from fog harvesting, microfluidics, advanced manufacturing, and pumpless fluid transfer. However, complex and costly fabrication along with poor durability have hindered the widespread utilization of biphilic surfaces. Here, hierarchical biphilic micro/nanostructured surfaces passively functionalized by the atmosphere are demonstrated as a platform to create scalable and abrasion‐resistant biphilic interfaces. Biphilic hierarchical copper oxide (CuO) nanowires are fabricated on copper substrates via laser ablation followed by thermal oxidation. The surfaces spontaneously become globally superhydrophobic and locally hydrophilic due to the adsorption of airborne volatile organic compounds on the ultrahigh surface energy CuO nanowires. The curvature‐dependent spatial variation in nanowire morphology enables local roughness variation and wetting contrast without the need for selective functionalization. Coalescence‐induced droplet jumping and water vapor condensation experiments demonstrate global superhydrophobicity with discrete local hydrophilicity. In addition to enhanced fog harvesting rates, the surfaces are demonstrated to have repeatable self‐healing function with enhanced abrasion resistance compared to single‐tier structured surfaces. The work not only develops a facile method of fabricating scalable biphilic surfaces via nanoscale structure variation and atmosphere‐mediated surface modification, but also provides insights into the role of wetting contrast on droplet dynamics.
- PAR ID:
- 10205849
- Date Published:
- Journal Name:
- Nanoscale Horizons
- ISSN:
- 2055-6756
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Solution-phase printing of exfoliated graphene flakes is emerging as a low-cost means to create flexible electronics for numerous applications. The electrical conductivity and electrochemical reactivity of printed graphene has been shown to improve with post-print processing methods such as thermal, photonic, and laser annealing. However, to date no reports have shown the manipulation of surface wettability via post-print processing of printed graphene. Herein, we demonstrate how the energy density of a direct-pulsed laser writing (DPLW) technique can be varied to tune the hydrophobicity and electrical conductivity of the inkjet-printed graphene (IPG). Experimental results demonstrate that the DPLW process can convert the IPG surface from one that is initially hydrophilic (contact angle ∼47.7°) and electrically resistive (sheet resistance ∼21 MΩ □ −1 ) to one that is superhydrophobic (CA ∼157.2°) and electrically conductive (sheet resistance ∼1.1 kΩ □ −1 ). Molecular dynamic (MD) simulations reveal that both the nanoscale graphene flake orientation and surface chemistry of the IPG after DPLW processing induce these changes in surface wettability. Moreover, DPLW can be performed with IPG printed on thermally and chemically sensitive substrates such as flexible paper and polymers. Hence, the developed, flexible IPG electrodes treated with DPLW could be useful for a wide range of applications such as self-cleaning, wearable, or washable electronics.more » « less
-
Abstract Preparing surfaces that repel low‐surface‐tension liquids, such as oils and hydrocarbon fuels with surface tensions below 30 mN m−1, poses more challenges than attaining water repellency. Oleophobic surfaces are needed when organic fluids must be contained to avoid pollutant spreading. A composite material system is presented comprised of fluorinated silica (filler), a perfluoroalkyl methacrylate copolymer (binder), and fluorinated polyhedral oligomeric silsesquioxane (additive; considered the lowest surface‐energy material to date), which can be applied as a thin coating onto any substrate. The coating is shown to repel liquids with surface tension as low as 23.8 mN m−1. Regions of the coatings are made superoleophilic (high affinity to oils and other hydrocarbons) through laser processing, thus generating wettability‐patterned surfaces that can
passively manage and transport low‐surface‐tension liquids by harnessing forces arising from the spatial confinement of the fluid. The rapid (>20 cm s−1) pumpless transport of several liquid hydrocarbons on open‐air, wettability‐engineered surfaces is demonstrated, and the respective transport rates are compared to those of water. The sprayable coating formulation and post‐processing steps used in this work offer a tractable approach to rapidly fabricate and test wettability‐engineered devices that can effectively contain, manage, and pumplessly transport low‐surface‐tension liquids on open surfaces. -
Dichtel, William R. (Ed.)The ability of lotus leaves to repel water is desired in numerous applications, such as self-cleaning surfaces, biomedical devices, and naval vessels. Creating materials that mimic the hierarchical structure and surface chemistry of lotus leaves requires multistep processes that are impractical for the mass production of nonwettable products. Superhydrophobic surfaces have been created using graphene. However, graphene sheets obtained through graphite exfoliation or deposition on substrates are not superhydrophobic and require additional processes to achieve lotus-like water repellency. In this work, we show that graphene produced in the gas phase is inherently superhydrophobic. Gas-phase-synthesized graphene (GSG) and lotus leaves have fundamentally different structures, yet water droplets on both materials exhibit comparable contact angles, roll-off angles, and bouncing characteristics. Furthermore, hydrophilic surfaces become superhydrophobic when covered with GSG. The substrate-free synthesis of GSG is straightforward and sustainable, which could enable the manufacturing of a diverse range of water-repellent technologies.more » « less
-
We developed an open microfluidic system to dispense and manipulate discrete droplets on planar plastic sheets. Here, a superhydrophobic material is spray-coated on commercially-available plastic sheets followed by the printing of hydrophilic symbols using an inkjet printer. The patterned plastic sheets are taped to a two-axis tilting platform, powered by stepper motors, that provides mechanical agitation for droplet transport. We demonstrate the following droplet operations: transport of droplets of different sizes, parallel transport of multiple droplets, merging and mixing of multiple droplets, dispensing of smaller droplets from a large droplet or a fluid reservoir, and one-directional transport of droplets. As a proof-of-concept, a colorimetric assay is implemented to measure the glucose concentration in sheep serum. Compared to silicon-based digital microfluidic devices, we believe that the presented system is appealing for various biological experiments because of the ease of altering design layouts of hydrophilic symbols, relatively faster turnaround time in printing plastic sheets, larger area to accommodate more tests, and lower operational costs by using off-the-shelf products.more » « less