skip to main content


Title: All-graphene-based open fluidics for pumpless, small-scale fluid transport via laser-controlled wettability patterning
Open microfluidics have emerged as a low-cost, pumpless alternative strategy to conventional microfluidics for delivery of fluid for a wide variety of applications including rapid biochemical analysis and medical diagnosis. However, creating open microfluidics by tuning the wettability of surfaces typically requires sophisticated cleanroom processes that are unamenable to scalable manufacturing. Herein, we present a simple approach to develop open microfluidic platforms by manipulating the surface wettability of spin-coated graphene ink films on flexible polyethylene terephthalate via laser-controlled patterning. Wedge-shaped hydrophilic tracks surrounded by superhydrophobic walls are created within the graphene films by scribing micron-sized grooves into the graphene with a CO 2 laser. This scribing process is used to make superhydrophobic walls (water contact angle ∼160°) that delineate hydrophilic tracks (created through an oxygen plasma pretreatment) on the graphene for fluid transport. These all-graphene open microfluidic tracks are capable of transporting liquid droplets with a velocity of 20 mm s −1 on a level surface and uphill at elevation angles of 7° as well as transporting fluid in bifurcating cross and tree branches. The all-graphene open microfluidic manufacturing technique is rapid and amenable to scalable manufacturing, and consequently offers an alternative pumpless strategy to conventional microfluidics and creates possibilities for diverse applications in fluid transport.  more » « less
Award ID(s):
1841649 1706994 1805512 1706817 1756999
NSF-PAR ID:
10205849
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale Horizons
ISSN:
2055-6756
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Biphilic surfaces having spatially distinct wetting have the potential to enable a plethora of applications ranging from fog harvesting, microfluidics, advanced manufacturing, and pumpless fluid transfer. However, complex and costly fabrication along with poor durability have hindered the widespread utilization of biphilic surfaces. Here, hierarchical biphilic micro/nanostructured surfaces passively functionalized by the atmosphere are demonstrated as a platform to create scalable and abrasion‐resistant biphilic interfaces. Biphilic hierarchical copper oxide (CuO) nanowires are fabricated on copper substrates via laser ablation followed by thermal oxidation. The surfaces spontaneously become globally superhydrophobic and locally hydrophilic due to the adsorption of airborne volatile organic compounds on the ultrahigh surface energy CuO nanowires. The curvature‐dependent spatial variation in nanowire morphology enables local roughness variation and wetting contrast without the need for selective functionalization. Coalescence‐induced droplet jumping and water vapor condensation experiments demonstrate global superhydrophobicity with discrete local hydrophilicity. In addition to enhanced fog harvesting rates, the surfaces are demonstrated to have repeatable self‐healing function with enhanced abrasion resistance compared to single‐tier structured surfaces. The work not only develops a facile method of fabricating scalable biphilic surfaces via nanoscale structure variation and atmosphere‐mediated surface modification, but also provides insights into the role of wetting contrast on droplet dynamics.

     
    more » « less
  2. Abstract

    Preparing surfaces that repel low‐surface‐tension liquids, such as oils and hydrocarbon fuels with surface tensions below 30 mN m−1, poses more challenges than attaining water repellency. Oleophobic surfaces are needed when organic fluids must be contained to avoid pollutant spreading. A composite material system is presented comprised of fluorinated silica (filler), a perfluoroalkyl methacrylate copolymer (binder), and fluorinated polyhedral oligomeric silsesquioxane (additive; considered the lowest surface‐energy material to date), which can be applied as a thin coating onto any substrate. The coating is shown to repel liquids with surface tension as low as 23.8 mN m−1. Regions of the coatings are made superoleophilic (high affinity to oils and other hydrocarbons) through laser processing, thus generating wettability‐patterned surfaces that canpassivelymanage and transport low‐surface‐tension liquids by harnessing forces arising from the spatial confinement of the fluid. The rapid (>20 cm s−1) pumpless transport of several liquid hydrocarbons on open‐air, wettability‐engineered surfaces is demonstrated, and the respective transport rates are compared to those of water. The sprayable coating formulation and post‐processing steps used in this work offer a tractable approach to rapidly fabricate and test wettability‐engineered devices that can effectively contain, manage, and pumplessly transport low‐surface‐tension liquids on open surfaces.

     
    more » « less
  3. Solution-phase printing of exfoliated graphene flakes is emerging as a low-cost means to create flexible electronics for numerous applications. The electrical conductivity and electrochemical reactivity of printed graphene has been shown to improve with post-print processing methods such as thermal, photonic, and laser annealing. However, to date no reports have shown the manipulation of surface wettability via post-print processing of printed graphene. Herein, we demonstrate how the energy density of a direct-pulsed laser writing (DPLW) technique can be varied to tune the hydrophobicity and electrical conductivity of the inkjet-printed graphene (IPG). Experimental results demonstrate that the DPLW process can convert the IPG surface from one that is initially hydrophilic (contact angle ∼47.7°) and electrically resistive (sheet resistance ∼21 MΩ □ −1 ) to one that is superhydrophobic (CA ∼157.2°) and electrically conductive (sheet resistance ∼1.1 kΩ □ −1 ). Molecular dynamic (MD) simulations reveal that both the nanoscale graphene flake orientation and surface chemistry of the IPG after DPLW processing induce these changes in surface wettability. Moreover, DPLW can be performed with IPG printed on thermally and chemically sensitive substrates such as flexible paper and polymers. Hence, the developed, flexible IPG electrodes treated with DPLW could be useful for a wide range of applications such as self-cleaning, wearable, or washable electronics. 
    more » « less
  4. null (Ed.)
    Abstract Recently, many studies have investigated additive manufacturing (AM) of hierarchical surfaces with high surface area/volume (SA/V) ratios, and their performance has been characterized for applications in next-generation functional devices. Despite recent advances, it remains challenging to design and manufacture high SA/V ratio structures with desired functionalities. In this study, we established the complex correlations among the SA/V ratio, surface structure geometry, functionality, and manufacturability in the two-photon polymerization (TPP) process. Inspired by numerous natural structures, we proposed a 3-level hierarchical structure design along with the mathematical modeling of the SA/V ratio. Geometric and manufacturing constraints were modeled to create well-defined three-dimensional hierarchically structured surfaces with a high accuracy. A process flowchart was developed to design the proposed surface structures to achieve the target functionality, SA/V ratio, and geometric accuracy. Surfaces with varied SA/V ratios and hierarchy levels were designed and printed. The wettability and antireflection properties of the fabricated surfaces were characterized. It was observed that the wetting and antireflection properties of the 3-level design could be easily tailored by adjusting the design parameter settings and hierarchy levels. Furthermore, the proposed surface structure could change a naturally hydrophilic surface to near-superhydrophobic. Geometrical light trapping effects were enabled and the antireflection property could be significantly enhanced (> 80% less reflection) by the proposed hierarchical surface structures. Experimental results implied the great potential of the proposed surface structures for various applications such as microfluidics, optics, energy, and interfaces. 
    more » « less
  5. Advances in solution-phase graphene patterning has provided a facile route for rapid, low-cost and scalable manufacturing of electrochemical devices, even on flexible substrates. While graphene possesses advantageous electrochemical properties of high surface area and fast heterogenous charge transport, these properties are attributed to the edge planes and defect sites, not the basal plane. Herein, we demonstrate enhancement of the electroactive nature of patterned solution-phase graphene by increasing the porosity and edge planes through the construction of a multidimensional architecture via salt impregnated inkjet maskless lithography (SIIML) and CO 2 laser annealing. Various sized macroscale pores (<25 to ∼250 μm) are patterned directly in the graphene surface by incorporating porogens ( i.e. , salt crystals) in the graphene ink which act as hard templates for pore formation and are later dissolved in water. Subsequently, microsized pores (∼100 nm to 2 μm in width) with edge plane defects are etched in the graphene lattice structure by laser annealing with a CO 2 laser, simultaneously improving electrical conductivity by nearly three orders of magnitude (sheet resistance decreases from >10 000 to ∼50 Ω sq −1 ). We demonstrate that this multidimensional porous graphene fabrication method can improve electrochemical device performance through design and manufacture of an electrochemical organophosphate biosensor that uses the enzyme acetylcholinesterase for detection. This pesticide biosensor exhibits enhanced sensitivity to acetylthiocholine compared to graphene without macropores (28.3 μA nM −1 to 13.3 μA nM −1 ) and when inhibited by organophosphate pesticides (paraoxon) has a wide linear range (10 nM to 500 nM), low limit of detection (0.6 nM), and high sensitivity (12.4 nA nM −1 ). Moreover, this fabrication method is capable of patterning complex geometries [ i.e. interdigitated electrodes (IDEs)] even on flexible surfaces as demonstrated by an IDE supercapacitor made of SIIML graphene on a heat sensitive polymer substrate. The supercapacitor demonstrates a high energy density of 0.25 mW h cm −3 at a power density of 0.3 W cm −3 . These electrochemical devices demonstrate the benefit of using SIIML and CO 2 laser annealing for patterning graphene electrodes with a multidimensional porous surface even on flexible substrates and is therefore a platform technology which could be applied to a variety of different biosensors and other electrochemical devices. 
    more » « less