skip to main content


Title: Superhydrophobic inkjet printed flexible graphene circuits via direct-pulsed laser writing
Solution-phase printing of exfoliated graphene flakes is emerging as a low-cost means to create flexible electronics for numerous applications. The electrical conductivity and electrochemical reactivity of printed graphene has been shown to improve with post-print processing methods such as thermal, photonic, and laser annealing. However, to date no reports have shown the manipulation of surface wettability via post-print processing of printed graphene. Herein, we demonstrate how the energy density of a direct-pulsed laser writing (DPLW) technique can be varied to tune the hydrophobicity and electrical conductivity of the inkjet-printed graphene (IPG). Experimental results demonstrate that the DPLW process can convert the IPG surface from one that is initially hydrophilic (contact angle ∼47.7°) and electrically resistive (sheet resistance ∼21 MΩ □ −1 ) to one that is superhydrophobic (CA ∼157.2°) and electrically conductive (sheet resistance ∼1.1 kΩ □ −1 ). Molecular dynamic (MD) simulations reveal that both the nanoscale graphene flake orientation and surface chemistry of the IPG after DPLW processing induce these changes in surface wettability. Moreover, DPLW can be performed with IPG printed on thermally and chemically sensitive substrates such as flexible paper and polymers. Hence, the developed, flexible IPG electrodes treated with DPLW could be useful for a wide range of applications such as self-cleaning, wearable, or washable electronics.  more » « less
Award ID(s):
1756999 1706994
NSF-PAR ID:
10061017
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
9
Issue:
48
ISSN:
2040-3364
Page Range / eLocation ID:
19058 to 19065
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Advances in solution-phase graphene patterning has provided a facile route for rapid, low-cost and scalable manufacturing of electrochemical devices, even on flexible substrates. While graphene possesses advantageous electrochemical properties of high surface area and fast heterogenous charge transport, these properties are attributed to the edge planes and defect sites, not the basal plane. Herein, we demonstrate enhancement of the electroactive nature of patterned solution-phase graphene by increasing the porosity and edge planes through the construction of a multidimensional architecture via salt impregnated inkjet maskless lithography (SIIML) and CO 2 laser annealing. Various sized macroscale pores (<25 to ∼250 μm) are patterned directly in the graphene surface by incorporating porogens ( i.e. , salt crystals) in the graphene ink which act as hard templates for pore formation and are later dissolved in water. Subsequently, microsized pores (∼100 nm to 2 μm in width) with edge plane defects are etched in the graphene lattice structure by laser annealing with a CO 2 laser, simultaneously improving electrical conductivity by nearly three orders of magnitude (sheet resistance decreases from >10 000 to ∼50 Ω sq −1 ). We demonstrate that this multidimensional porous graphene fabrication method can improve electrochemical device performance through design and manufacture of an electrochemical organophosphate biosensor that uses the enzyme acetylcholinesterase for detection. This pesticide biosensor exhibits enhanced sensitivity to acetylthiocholine compared to graphene without macropores (28.3 μA nM −1 to 13.3 μA nM −1 ) and when inhibited by organophosphate pesticides (paraoxon) has a wide linear range (10 nM to 500 nM), low limit of detection (0.6 nM), and high sensitivity (12.4 nA nM −1 ). Moreover, this fabrication method is capable of patterning complex geometries [ i.e. interdigitated electrodes (IDEs)] even on flexible surfaces as demonstrated by an IDE supercapacitor made of SIIML graphene on a heat sensitive polymer substrate. The supercapacitor demonstrates a high energy density of 0.25 mW h cm −3 at a power density of 0.3 W cm −3 . These electrochemical devices demonstrate the benefit of using SIIML and CO 2 laser annealing for patterning graphene electrodes with a multidimensional porous surface even on flexible substrates and is therefore a platform technology which could be applied to a variety of different biosensors and other electrochemical devices. 
    more » « less
  2. The reliability of additively manufactured flexible electronics or so-called printed electronics is defined as mean time to failure under service conditions, which often involve mechanical loads. It is thus important to understand the mechanical behavior of the printed materials under such conditions to ensure their applicational reliability in, for example, sensors, biomedical devices, battery and storage, and flexible hybrid electronics. In this article, a testing protocol to examine the print quality of additively nanomanufactured electronics is presented. The print quality is assessed by both tensile and electrical resistivity responses during in-situ tension tests. A laser based additive nanomanufacturing method is used to print conductive silver lines on polyimide substrates, which is then tested in-situ under tension inside a scanning electron microscope (SEM). The surface morphology of the printed lines is continuously monitored via the SEM until failure. In addition, the real-time electrical resistance variations of the printed silver lines are measured in-situ with a multimeter during tensile tests conducted outside of the SEM. The protocol is shown to be effective in assessing print quality and aiding process tuning. Finally, it is revealed that samples appearing identical under the SEM can have significant different tendencies to delaminate. 
    more » « less
  3. Abstract

    Metal patterning via additive manufacturing has been phasing‐in to broad applications in many medical, electronics, aerospace, and automotive industries. While previous efforts have produced various promising metal‐patterning strategies, their complexity and high cost have limited their practical application in rapid production and prototyping. Herein, a one‐step gold printing technique based on anion‐assisted photochemical deposition (APD), which can directly print highly conductive gold patterns (1.08 × 107S m−1) under ambient conditions without post‐annealing treatment, is introduced. Uniquely, the APD uses specific ion effects with projection lithography to pattern Au nanoparticles and simultaneously sinter them into tunable porous gold structures. The significant influence of kosmotropic or chaotropic anions in the precursor ink on tuning the morphologies and conductivities of the printed patterns by employing a series of different ions, including Clions, in the printing process is presented. Additionally, the resistance stabilities and the electrochemical properties of the APD‐printed gold patterns are carefully investigated. The high conductivity and excellent conformability of the printed Au electrodes are demonstrated with reliable performance in electrophysiological signal delivery and acquisition for biomedical applications. This work exploits the potential of photochemical‐deposition‐based metal patterning in flexible electronic manufacturing.

     
    more » « less
  4. Aerosol Jet Printing shows a lot of promise for the future of printable electronics. It is compatible with a wide range of materials and can be printed on nearly any type of surface features because of its 3–5 mm standoff distance from the substrate. However, nearly all materials printed require some form of post-sintering processing to reduce the electrical resistance. Many companies develop these materials, but only provide a narrow range of post processing results to demonstrate the achievable conductivity values. In this paper, a design of experiment (DOE) is presented that demonstrates a way to characterize any material for Aerosol Jet Printing during and after post sintering processing by measuring conductivity with different time and temperature values. From these results, a linear regression model can be made to develop an equation that predicts conductivity at a given time-temperature value. This paper applies this method to Clariant Ag ink and sinters silver pads in an oven. A linear regression model is successfully developed that fits the data very well. From this model, an equation is derived to predict the conductivity of the Clariant Ag ink for any time-temperature value. Although only demonstrated with an oven and one type of ink, this method of experimentation and model development can be done with any material and any post processing method. 
    more » « less
  5. Abstract

    Electrical and mechanical integration approaches are essential for emerging hybrid electronics that must robustly bond rigid electrical components with flexible circuits and substrates. However, flexible polymeric substrates and circuits cannot withstand the high temperatures used in traditional electronic processing. This constraint requires new strategies to create flexible materials that simultaneously achieve high electrical conductivity, strong adhesion, and processibility at low temperature. Here, an electrically conductive adhesive is introduced that is flexible, electrically conductive (up to 3.25×105S m−1) without sintering or high temperature post‐processing, and strongly adhesive to various materials common to flexible and stretchable circuits (fracture energy 350 <Gc< 700 J m−2). This is achieved through a multiphase soft composite consisting of an elastomeric and adhesive epoxy network with dispersed liquid metal droplets that are bridged by silver flakes, which form a flexible and conductive percolated network. These inks can be processed through masked deposition and direct ink writing at room temperature. This enables soft conductive wiring and robust integration of rigid components onto flexible substrates to create hybrid electronics for emerging applications in soft electronics, soft robotics, and multifunctional systems.

     
    more » « less