skip to main content


Title: Multi-agent coordination via a shared wireless spectrum
This paper considers a planar multi-agent coordination problem. Unlike other related works, we explicitly consider a globally shared wireless communication channel where individual agents must choose both a frequency and power to transmit their messages at. This problem is motivated by the pressing need for algorithms that are able to efficiently and reliably operate on overcrowded wireless networks or otherwise poor-performing RF environments. We develop a self-triggered coordination algorithm that guarantees convergence to the desired set of states with probability 1. The algorithm is developed by using ideas from event/self-triggered coordination and allows agents to autonomously decide for themselves when to broadcast information, at which frequency and power, and how to move based on information received from other agents in the network. Simulations illustrate our results.  more » « less
Award ID(s):
1737989
NSF-PAR ID:
10060064
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE Conference on Decision and Control
Page Range / eLocation ID:
6714 to 6719
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study a multi-agent partially observable environment in which autonomous agents aim to coordinate their actions, while also learning the parameters of the unknown environment through repeated interactions. In particular, we focus on the role of communication in a multi-agent reinforcement learning problem. We consider a learning algorithm in which agents make decisions based on their own observations of the environment, as well as the observations of other agents, which are collected through communication between agents. We first identify two potential benefits of this type of information sharing when agents' observation quality is heterogeneous: (1) it can facilitate coordination among agents, and (2) it can enhance the learning of all participants, including the better informed agents. We show however that these benefits of communication depend in general on its timing, so that delayed information sharing may be preferred in certain scenarios. 
    more » « less
  2. Doty, David and (Ed.)
    We develop a framework for self-induced phase changes in programmable matter in which a collection of agents with limited computational and communication capabilities can collectively perform appropriate global tasks in response to local stimuli that dynamically appear and disappear. Agents reside on graph vertices, where each stimulus is only recognized locally, and agents communicate via token passing along edges to alert other agents to transition to an Aware state when stimuli are present and an Unaware state when the stimuli disappear. We present an Adaptive Stimuli Algorithm that is robust to competing waves of messages as multiple stimuli change, possibly adversarially. Moreover, in addition to handling arbitrary stimulus dynamics, the algorithm can handle agents reconfiguring the connections (edges) of the graph over time in a controlled way. As an application, we show how this Adaptive Stimuli Algorithm on reconfigurable graphs can be used to solve the foraging problem, where food sources may be discovered, removed, or shifted at arbitrary times. We would like the agents to consistently self-organize, using only local interactions, such that if the food remains in a position long enough, the agents transition to a gather phase in which many collectively form a single large component with small perimeter around the food. Alternatively, if no food source has existed recently, the agents should undergo a self-induced phase change and switch to a search phase in which they distribute themselves randomly throughout the lattice region to search for food. Unlike previous approaches to foraging, this process is indefinitely repeatable, withstanding competing waves of messages that may interfere with each other. Like a physical phase change, microscopic changes such as the deletion or addition of a single food source trigger these macroscopic, system-wide transitions as agents share information about the environment and respond locally to get the desired collective response. 
    more » « less
  3. We present SignalGP, a new genetic programming (GP) technique designed to incorporate the event-driven programming paradigm into computational evolution's toolbox. Event-driven programming is a software design philosophy that simplifies the development of reactive programs by automatically triggering program modules (event-handlers) in response to external events, such as signals from the environment or messages from other programs. SignalGP incorporates these concepts by extending existing tag-based referencing techniques into an event-driven context. Both events and functions are labeled with evolvable tags; when an event occurs, the function with the closest matching tag is triggered. In this work, we apply SignalGP in the context of linear GP. We demonstrate the value of the event-driven paradigm using two distinct test problems (an environment coordination problem and a distributed leader election problem) by comparing SignalGP to variants that are otherwise identical, but must actively use sensors to process events or messages. In each of these problems, rapid interaction with the environment or other agents is critical for maximizing fitness. We also discuss ways in which SignalGP can be generalized beyond our linear GP implementation. 
    more » « less
  4. We consider the problem of spectrum sharing by multiple cellular operators. We propose a novel deep Reinforcement Learning (DRL)-based distributed power allocation scheme which utilizes the multi-agent Deep Deterministic Policy Gradient (MA-DDPG) algorithm. In particular, we model the base stations (BSs) that belong to the multiple operators sharing the same band, as DRL agents that simultaneously determine the transmit powers to their scheduled user equipment (UE) in a synchronized manner. The power decision of each BS is based on its own observation of the radio environment (RF) environment, which consists of interference measurements reported from the UEs it serves, and a limited amount of information obtained from other BSs. One advantage of the proposed scheme is that it addresses the single-agent non-stationarity problem of RL in the multi-agent scenario by incorporating the actions and observations of other BSs into each BS's own critic which helps it to gain a more accurate perception of the overall RF environment. A centralized-training-distributed-execution framework is used to train the policies where the critics are trained over the joint actions and observations of all BSs while the actor of each BS only takes the local observation as input in order to produce the transmit power. Simulation with the 6 GHz Unlicensed National Information Infrastructure (U-NII)-5 band shows that the proposed power allocation scheme can achieve better throughput performance than several state-of-the-art approaches. 
    more » « less
  5. With the rapid growth of Internet of Things (IoT) applications in recent years, there is a strong need for wireless uplink scheduling algorithms that determine when and which subset of a large number of users should transmit to the central controller. Different from the downlink case, the central controller in the uplink scenario typically has very limited information about the users. On the other hand, collecting all such information from a large number of users typically incurs a prohibitively high communication overhead. This motivates us to investigate the development of an efficient and low-overhead uplink scheduling algorithm that is suitable for large-scale IoT applications with limited amount of coordination from the central controller. Specifically, we first characterize a capacity outer bound subject to the sampling constraint where only a small subset of users are allowed to use control channels for system state reporting and wireless channel probing. Next, we relax the sampling constraint and propose a joint sampling and transmission algorithm, which utilizes full knowledge of channel state distributions and instantaneous queue lengths to achieve the capacity outer bound. The insights obtained from this capacity-achieving algorithm allow us to develop an efficient and low-overhead scheduling algorithm that can strictly satisfy the sampling constraint with asymptotically diminishing throughput loss. Moreover, the throughput performance of our proposed algorithm is independent of the number of users, a highly desirable property in large-scale IoT systems. Finally, we perform extensive simulations to validate our theoretical results. 
    more » « less