skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surface Fluxes Modulate the Seasonality of Zonal-Mean Storm Tracks
Abstract The observed zonal-mean extratropical storm tracks exhibit distinct hemispheric seasonality. Previously, the moist static energy (MSE) framework was used diagnostically to show that shortwave absorption (insolation) dominates seasonality but surface heat fluxes damp seasonality in the Southern Hemisphere (SH) and amplify it in the Northern Hemisphere (NH). Here we establish the causal role of surface fluxes (ocean energy storage) by varying the mixed layer depth d in zonally symmetric 1) slab-ocean aquaplanet simulations with zero ocean energy transport and 2) energy balance model (EBM) simulations. Using a scaling analysis we define a critical mixed layer depth dc and hypothesize 1) large mixed layer depths (d > dc) produce surface heat fluxes that are out of phase with shortwave absorption resulting in small storm track seasonality and 2) small mixed layer depths (d < dc) produce surface heat fluxes that are in phase with shortwave absorption resulting in large storm track seasonality. The aquaplanet simulations confirm the large mixed layer depth hypothesis and yield a useful idealization of the SH storm track. However, the small mixed layer depth hypothesis fails to account for the large contribution of the Ferrel cell and atmospheric storage. The small mixed layer limit does not yield a useful idealization of the NH storm track because the seasonality of the Ferrel cell contribution is opposite to the stationary eddy contribution in the NH. Varying the mixed layer depth in an EBM qualitatively supports the aquaplanet results.  more » « less
Award ID(s):
1742944
PAR ID:
10205887
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
77
Issue:
2
ISSN:
0022-4928
Page Range / eLocation ID:
753 to 779
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Slab-ocean aquaplanet simulations with thermodynamic sea ice are used to study the zonally symmetric mechanisms whereby polar sea ice loss impacts the midlatitude atmosphere. Imposed sea ice loss (difference without and with sea ice with historical CO2concentration) leads to global warming, polar amplified warming, and a weakening of poleward atmospheric energy transport and the midlatitude storm-track intensity. The simulations confirm an energetic mechanism that predicts a weakening of storm-track intensity in response to sea ice loss, given the change of surface albedo and assuming a passive ocean. Namely, sea ice loss increases the absorption of shortwave radiation by the surface (following the decrease of surface albedo), which increases surface turbulent fluxes into the atmosphere thereby weakening poleward atmospheric energy transport. The storm-track intensity weakens because it dominates poleward energy transport. The quantitative prediction underlying the mechanism captures the weakening but underestimates its amplitude. The weakening is also consistent with weaker mean available potential energy (polar amplified warming) and scales with sea ice extent, which is controlled by the slab-ocean depth. The energetic mechanism also operates in response to sea ice loss due to melting (difference of the response to quadrupled CO2with and without sea ice). Finally, the midlatitude response to sea ice loss in the aquaplanet agrees qualitatively with the response in more complex climate models. Namely, the storm-track intensity weakens and the energetic mechanism operates, but the method used to impose sea ice loss in coupled models impacts the surface response. 
    more » « less
  2. Abstract Reanalysis data show a significant weakening of summertime circulation in the Northern Hemisphere (NH) midlatitudes in the satellite era with implications for surface weather extremes. Recent work showed the weakening is not significantly affected by changes in the Arctic, but did not examine the role of different anthropogenic forcings such as aerosols. Here we use the Detection and Attribution Model Intercomparison Project (DAMIP) simulations to quantify the impact of anthropogenic aerosol and greenhouse gas forcing. The DAMIP simulations show aerosols and greenhouse gases contribute equally to zonal‐mean circulation weakening. Regionally, aerosol dominates the Pacific storm track weakening whereas greenhouse gas dominates in the Atlantic. Using a regional energetic framework, we show why the impact of aerosol is the largest in the Pacific. Reduced sulfate aerosol emissions over Eurasia and North America increase (clear‐sky) surface shortwave radiation and turbulent fluxes. This enhances land‐to‐ocean energy contrast and energy transport via stationary circulations to the ocean. Consequently, energy converges poleward of oceanic storm tracks, demanding weaker poleward energy transport storm tracks, and the storm tracks weaken. The impact is larger over the Pacific following the larger emission decrease over Eurasia than North America. Similar yet opposite, increased aerosol emissions over South and East Asia decrease shortwave radiation and weaken land‐to‐ocean energy transport. This diverges energy equatorward of the Pacific storm track, further weakening it. Our results show aerosols are a dominant driver of regional circulation weakening during the NH summertime in the satellite era and a regional energetic framework explaining the underlying processes. 
    more » « less
  3. Abstract Destratification and restratification of a ~50-m-thick surface boundary layer in the North Pacific Subtropical Front are examined during 24–31 March 2017 in the wake of a storm using a ~5-km array of 23 chi-augmented EM-APEX profiling floats ( u , υ , T , S , χ T ), as well as towyo and ADCP ship surveys, shipboard air-sea surface fluxes, and parameterized shortwave penetrative radiation. During the first four days, nocturnal destabilizing buoyancy fluxes mixed the surface layer over almost its full depth every night followed by restratification to N ~ 2 × 10 −3 rad s −1 during daylight. Starting on 28 March, nocturnal destabilizing buoyancy fluxes weakened because weakening winds reduced latent heat flux. Shallow mixing and stratified transition layers formed above ~20-m depth. A remnant layer in the lower part of the surface layer was insulated from destabilizing surface forcing. Penetrative radiation, turbulent buoyancy fluxes, and horizontal buoyancy advection all contribute to its restratification, closing the budget to within measurement uncertainties. Buoyancy advective restratification (slumping) plays a minor role. Before 28 March, measured advective restratification is confined to daytime; is often destratifying; and is much stronger than predictions of geostrophic adjustment, mixed-layer eddy instability, and Ekman buoyancy flux because of storm-forced inertial shear. Starting on 28 March, while small, the subinertial envelope of measured buoyancy advective restratification in the remnant layer proceeds as predicted by mixed-layer eddy parameterizations. 
    more » « less
  4. This paper presents new estimates of the hemispheric energy balance based on an assembly of radiative flux and ocean heat data. Further, it provides an overview of recent simulations with fully coupled climate models to investigate the role of its representation in causing tropical precipitation biases. The energy balance portrayed here features a small hemispheric imbalance with slightly more energy being absorbed by the Southern hemisphere. This yields a net transport of heat towards the NH composing of a northward cross-equatorial heat transport by the oceans and a southward heat flow in the atmosphere. The turbulent fluxes and hemispheric precipitation balance to about 3 Wm−2 with slightly larger total accumulation occurring in the NH. CloudSat data indicate more frequent precipitation in the SH implying more intense precipitation in the NH. Fully coupled climate model simulations show that reducing hemispheric energy balance biases does little to reduce existing biases in tropical precipitation. 
    more » « less
  5. Abstract Transient climate sensitivity is strongly shaped by geographical patterns of ocean heat uptake (OHU). To isolate the effects of uncertainties associated with OHU, a single slab ocean model is forced with doubled CO2and an ensemble of OHU patterns diagnosed from transient warming scenarios in 12 fully coupled models. The single-model ensemble produces a wide range of Southern Ocean (SO) sea surface temperature (SST) and Antarctic sea ice responses, which are in turn associated with a 1.1–2.0-K range of transient climate response (TCR). Feedback analysis attributes the TCR spread primarily to shortwave effects of low clouds in the Southern Hemisphere (SH) midlatitudes. These cloud changes are strongly positively correlated with storm-track eddy kinetic energy. It is argued that midlatitude clouds (and thus planetary albedo) are remotely driven by SO SST and Antarctic sea ice, mediated by large-scale changes in SH baroclinicity and lower-tropospheric stability. The robustness of this atmospheric teleconnection between SO SST, Antarctic sea ice, and global feedback through midlatitude clouds is supported through additional simulations that explore more extreme SST and sea ice perturbations. These results highlight the importance of understanding physical relationships between SST, sea ice, circulation, and cloud changes in the SH as a pathway to better constraining transient climate sensitivity. Significance StatementAlthough it is well known that Earth’s global-mean surface temperature increases with increasing atmospheric CO2, there are still significant uncertainties in the temperature and sea ice trends over the Southern Ocean region. Using a climate model, we find that Southern Ocean temperature and Antarctic sea ice changes can result in substantial cloud cover changes over the Southern Hemisphere, which play a primary role in determining the amount of warming in our experiments. We suggest that, in order to reduce uncertainty in future climate change, more work is needed to understand how the climate of the southern polar region can affect the circulation and clouds of the midlatitudes. 
    more » « less