Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Slab-ocean aquaplanet simulations with thermodynamic sea ice are used to study the zonally symmetric mechanisms whereby polar sea ice loss impacts the midlatitude atmosphere. Imposed sea ice loss (difference without and with sea ice with historical CO2concentration) leads to global warming, polar amplified warming, and a weakening of poleward atmospheric energy transport and the midlatitude storm-track intensity. The simulations confirm an energetic mechanism that predicts a weakening of storm-track intensity in response to sea ice loss, given the change of surface albedo and assuming a passive ocean. Namely, sea ice loss increases the absorption of shortwave radiation by the surface (following the decrease of surface albedo), which increases surface turbulent fluxes into the atmosphere thereby weakening poleward atmospheric energy transport. The storm-track intensity weakens because it dominates poleward energy transport. The quantitative prediction underlying the mechanism captures the weakening but underestimates its amplitude. The weakening is also consistent with weaker mean available potential energy (polar amplified warming) and scales with sea ice extent, which is controlled by the slab-ocean depth. The energetic mechanism also operates in response to sea ice loss due to melting (difference of the response to quadrupled CO2with and without sea ice). Finally, the midlatitude response to sea ice loss in the aquaplanet agrees qualitatively with the response in more complex climate models. Namely, the storm-track intensity weakens and the energetic mechanism operates, but the method used to impose sea ice loss in coupled models impacts the surface response.more » « less
-
Abstract Simulations show that storm tracks were weaker during past cold, icy climates relative to the modern climate despite increased surface baroclinicity. Previous work explained the weak North Atlantic storm track during the Last Glacial Maximum using dry zonally asymmetric mechanisms associated with orographic forcing. Here we show that zonally symmetric mechanisms associated with the hydrological cycle explain the weak Snowball Earth storm track. The weak storm track is consistent with the decreased meridional gradient of evaporation and atmospheric shortwave absorption and can be predicted following global mean cooling and the Clausius‐Clapeyron relation. The weak storm track is also consistent with decreased latent heat release aloft in the tropics, which decreases upper tropospheric baroclinicity and mean available potential energy. Overall, both hydrological cycle mechanisms are reflected in the significant correlation between storm track intensity and the meridional surface moist static energy gradient across a range of simulated climates between modern and Snowball Earth.more » « less
-
Abstract We extend the locking technique to separate the poleward shift of the atmospheric circulation in response to quadrupled CO2into contributions from (1) CO2increase, (2) cloud radiative effects, and (3) wind and surface humidity‐induced surface heat exchange. In aquaplanet simulations, wind and surface humidity‐induced surface heat exchange accounts for 30–60% of the Hadley cell edge and midlatitude eddy‐driven jet shift. The increase of surface specific humidity dominates and mostly follows global mean warming. Consistent with previous work the remaining shift is attributed to cloud radiative effects. Across CMIP5 models the intermodel variance in the austral winter circulation shift in response to quadrupled CO2is significantly correlated with the response of the subtropical‐subpolar difference of surface heat exchange. The results highlight the dominant role of surface heat exchange for future circulation changes.more » « less
-
Abstract Climate models project tropical warming is amplified aloft relative to the surface in response to increased CO2. Here we show moist adiabatic adjustment overpredicts the multimodel mean 300 hPa temperature response by 16.6–25.3% across the CMIP5 model hierarchy. We show three mechanisms influence overprediction: climatological large‐scale circulation, direct effect of increased CO2, and convective entrainment. Accounting for the presence of a climatological large‐scale circulation and the direct effect of CO2reduces the CMIP5 multimodel mean overprediction by 0.7–7.2% and 2.8–3.9%, respectively, but does not eliminate it. To quantify the influence of entrainment, we vary the Tokioka parameter in aquaplanet simulations. When entrainment is decreased by decreasing the Tokioka parameter from 0.1 to 0, overprediction decreases by 9.6% and 10.4% with and without a large‐scale circulation, respectively. The sensitivity of overprediction to climatological entrainment rate in the aquaplanet mostly follows the predictions of zero‐buoyancy bulk‐plume and spectral‐plume models.more » « less
-
null (Ed.)Abstract The observed zonal-mean extratropical storm tracks exhibit distinct hemispheric seasonality. Previously, the moist static energy (MSE) framework was used diagnostically to show that shortwave absorption (insolation) dominates seasonality but surface heat fluxes damp seasonality in the Southern Hemisphere (SH) and amplify it in the Northern Hemisphere (NH). Here we establish the causal role of surface fluxes (ocean energy storage) by varying the mixed layer depth d in zonally symmetric 1) slab-ocean aquaplanet simulations with zero ocean energy transport and 2) energy balance model (EBM) simulations. Using a scaling analysis we define a critical mixed layer depth dc and hypothesize 1) large mixed layer depths (d > dc) produce surface heat fluxes that are out of phase with shortwave absorption resulting in small storm track seasonality and 2) small mixed layer depths (d < dc) produce surface heat fluxes that are in phase with shortwave absorption resulting in large storm track seasonality. The aquaplanet simulations confirm the large mixed layer depth hypothesis and yield a useful idealization of the SH storm track. However, the small mixed layer depth hypothesis fails to account for the large contribution of the Ferrel cell and atmospheric storage. The small mixed layer limit does not yield a useful idealization of the NH storm track because the seasonality of the Ferrel cell contribution is opposite to the stationary eddy contribution in the NH. Varying the mixed layer depth in an EBM qualitatively supports the aquaplanet results.more » « less
An official website of the United States government
