Abstract Minimizing an adversarial surrogate risk is a common technique for learning robust classifiers. Prior work showed that convex surrogate losses are not statistically consistent in the adversarial context – or in other words, a minimizing sequence of the adversarial surrogate risk will not necessarily minimize the adversarial classification error. We connect the consistency of adversarial surrogate losses to properties of minimizers to the adversarial classification risk, known asadversarial Bayes classifiers. Specifically, under reasonable distributional assumptions, a convex surrogate loss is statistically consistent for adversarial learning iff the adversarial Bayes classifier satisfies a certain notion of uniqueness.
more »
« less
Calibrated Surrogate Losses for Adversarially Robust Classification
Adversarially robust classification seeks a classifier that is insensitive to adversarial perturbations of test patterns. This problem is often formulated via a minimax objective, where the target loss is the worst-case value of the 0-1 loss subject to a bound on the size of perturbation. Recent work has proposed convex surrogates for the adversarial 0-1 loss, in an effort to make optimization more tractable. In this work, we consider the question of which surrogate losses are calibrated with respect to the adversarial 0-1 loss, meaning that minimization of the former implies minimization of the latter. We show that no convex surrogate loss is calibrated with respect to the adversarial 0-1 loss when restricted to the class of linear models. We further introduce a class of nonconvex losses and offer necessary and sufficient conditions for losses in this class to be calibrated. Keywords: surrogate loss, classification calibration, adversarial robustness
more »
« less
- Award ID(s):
- 1838179
- PAR ID:
- 10206120
- Date Published:
- Journal Name:
- Conference on Learning Theory, 2020
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multiclass extensions of the support vector machine (SVM) have been formulated in a variety of ways. A recent empirical comparison of nine such formulations [1] recommends the variant proposed by Weston and Watkins (WW), despite the fact that the WW-hinge loss is not calibrated with respect to the 0-1 loss. In this work we introduce a novel discrete loss function for multiclass classification, the ordered partition loss, and prove that the WW-hinge loss is calibrated with respect to this loss. We also argue that the ordered partition loss is minimally emblematic among discrete losses satisfying this property. Finally, we apply our theory to justify the empirical observation made by Doˇgan et al. [1] that the WW-SVM can work well even under massive label noise, a challenging setting for multiclass SVMs.more » « less
-
null (Ed.)Multiclass extensions of the support vector machine (SVM) have been formulated in a variety of ways.A recent empirical comparison of nine such formulations [1]recommends the variant proposed by Westonand Watkins (WW), despite the fact that the WW-hinge loss is not calibrated with respect to the 0-1 loss.In this work we introduce a novel discrete loss function for multiclass classification, theordered partitionloss, and prove that the WW-hinge lossiscalibrated with respect to this loss. We also argue that theordered partition loss is maximally informative among discrete losses satisfying this property. Finally,we apply our theory to justify the empirical observation made by Doˇgan et al. [1] that the WW-SVMcan work well even under massive label noise, a challenging setting for multiclass SVMs.more » « less
-
The notion of margin loss has been central to the development and analysis of algorithms for binary classification. To date, however, there remains no consensus as to the analogue of the margin loss for multiclass classification. In this work, we show that a broad range of multiclass loss functions, including many popular ones, can be expressed in the relative margin form, a generalization of the margin form of binary losses. The relative margin form is broadly useful for understanding and analyzing multiclass losses as shown by our prior work (Wang and Scott, 2020, 2021). To further demonstrate the utility of this way of expressing multiclass losses, we use it to extend the seminal result of Bartlett et al. (2006) on classification calibration of binary margin losses to multiclass. We then analyze the class of Fenchel-Young losses, and expand the set of these losses that are known to be classification-calibrated.more » « less
-
Deploying complex machine learning models on resource-constrained devices is challenging due to limited computational power, memory, and model retrainability. To address these limitations, a hybrid system can be established by augmenting the local model with a server-side model, where samples are selectively deferred by a rejector and then sent to the server for processing. The hybrid system enables efficient use of computational resources while minimizing the overhead associated with server usage. The recently proposed Learning to Help (L2H) model proposed training a server model given a fixed local (client) model. This differs from the Learning to Defer (L2D) framework which trains the client for a fixed (expert) server. In both L2D and L2H, the training includes learning a rejector at the client to determine when to query the server. In this work, we extend the L2H model from binary to multi-class classification problems and demonstrate its applicability in a number of different scenarios of practical interest in which access to the server may be limited by cost, availability, or policy. We derive a stage-switching surrogate loss function that is differentiable, convex, and consistent with the Bayes rule corresponding to the 0-1 loss for the L2H model. Experiments show that our proposed methods offer an efficient and practical solution for multi-class classification in resource-constrained environments.more » « less
An official website of the United States government

