A bstract We study the four-point function of the lowest-lying half-BPS operators in the $$ \mathcal{N} $$ N = 4 SU( N ) super-Yang-Mills theory and its relation to the flat-space four-graviton amplitude in type IIB superstring theory. We work in a large- N expansion in which the complexified Yang-Mills coupling τ is fixed. In this expansion, non-perturbative instanton contributions are present, and the SL(2 , ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the mass-deformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the four-point correlator at separated points. In a normalization where the two-point functions are proportional to N 2 − 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the four-point correlator are proportional to the non-holomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$ E\left(\frac{5}{2},\tau, \overline{\tau}\right) $$ E 5 2 τ τ ¯ , respectively. In the flat space limit, these terms match the corresponding terms in the type IIB S-matrix arising from R 4 and D 4 R 4 contact inter-actions, which, for the R 4 case, represents a check of AdS/CFT at finite string coupling. Furthermore, we present striking evidence that these results generalize so that, at order $$ {N}^{\frac{1}{2}-m} $$ N 1 2 − m with integer m ≥ 0, the expansion of the integrated correlator we study is a linear sum of non-holomorphic Eisenstein series with half-integer index, which are manifestly SL(2 , ℤ) invariant.
more »
« less
Strong coupling expansion of circular Wilson loops and string theories in AdS5 × S5 and AdS4 × CP3
A bstract We revisit the problem of matching the strong coupling expansion of the $$ \frac{1}{2} $$ 1 2 BPS circular Wilson loops in $$ \mathcal{N} $$ N = 4 SYM and ABJM gauge theories with their string theory duals in AdS 5 × S 5 and AdS 4 × CP 3 , at the first subleading (one-loop) order of the expansion around the minimal surface. We observe that, including the overall factor 1/ g s of the inverse string coupling constant, as appropriate for the open string partition function with disk topology, and a universal prefactor proportional to the square root of the string tension T , both the SYM and ABJM results precisely match the string theory prediction. We provide an explanation of the origin of the $$ \sqrt{T} $$ T prefactor based on special features of the combination of one-loop determinants appearing in the string partition function. The latter also implies a natural generalization Z χ ∼ ( $$ \sqrt{T}/{g}_{\mathrm{s}} $$ T / g s ) χ to higher genus contributions with the Euler number χ , which is consistent with the structure of the 1/ N corrections found on the gauge theory side.
more »
« less
- Award ID(s):
- 1914860
- PAR ID:
- 10206130
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2020
- Issue:
- 10
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract We compute 1 /λ corrections to the four-point functions of half-BPS operators in SU( N ) $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory at large N and large ’t Hooft coupling λ = $$ {g}_{\mathrm{YM}}^2N $$ g YM 2 N using two methods. Firstly, we relate integrals of these correlators to derivatives of the mass deformed S 4 free energy, which was computed at leading order in large N and to all orders in 1 /λ using supersymmetric localization. Secondly, we use AdS/CFT to relate these 1 /λ corrections to higher derivative corrections to supergravity for scattering amplitudes of Kaluza-Klein scalars in IIB string theory on AdS 5 × S 5 , which in the flat space limit are known from worldsheet calculations. These two methods match at the order corresponding to the tree level R 4 interaction in string theory, which provides a precise check of AdS/CFT beyond supergravity, and allow us to derive the holographic correlators to tree level D 4 R 4 order. Combined with constraints from [1], our results can be used to derive CFT data to one-loop D 4 R 4 order. Finally, we use AdS/CFT to fix these correlators in the limit where N is taken to be large while g YM is kept fixed. In this limit, we present a conjecture for the small mass limit of the S 4 partition function that includes all instanton corrections and is written in terms of the same Eisenstein series that appear in the study of string theory scattering amplitudes.more » « less
-
A<sc>bstract</sc> The quantization of semiclassical strings in AdS spacetimes yields predictions for the strong-coupling behaviour of the scaling dimensions of the corresponding operators in the planar limit of the dual gauge theory. Finding non-planar corrections requires computing string loops (corresponding to torus and higher genus surfaces), which is a challenging task. It turns out that in the case of theUk(N) ×U−k(N) ABJM theory there is an alternative approach: one may semiclassically quantize M2 branes in AdS4×S7/ℤkwhich are wrapped around the 11d circle of radius 1/k=λ/N. Such M2 branes are the M-theory generalization of the strings in AdS × CP3. In this work, we show that by expanding in large M2 brane tensionT2~$$ \sqrt{kN} $$ for fixedk, followed by an expansion in largek, we can predict the largeλasymptotics of the non-planar corrections to the dimensions of the dual ABJM operators. As a specific example, we consider the M2 brane configuration that generalizes the long folded string with large spin in AdS4, and compute the 1-loop correction to its energy. This calculation allows us to determine non-planar corrections to the universal scaling function or cusp anomalous dimension. We extend our analysis to the semiclassical M2 branes that generalize the “short” and “long” circular strings with two equal angular momenta in CP3. The “short” M2 brane corresponds to a dual operator whose dimension at strong coupling scales as ∆ ∼λ1/4+ …, and we derive the leading non-planar correction to it.more » « less
-
A<sc>bstract</sc> Motivated by understanding the scattering of gravitons and their superpartners from extended (p,q)-strings in type IIB string theory via AdS/CFT, we study an integrated two-point function of stress tensor multiplet operators in the presence of a half-BPS line defect in$$ \mathcal{N} $$ = 4 SU(N) super-Yang-Mills theory. We determine this integrated correlator at the five lowest non-trivial orders in$$ 1/\sqrt{N} $$ at fixed Yang-Mills coupling andθangle. Our calculations are performed explicitly when the line defect is a Wilson line, in which case we find a finite number of perturbative contributions at each order in$$ 1/\sqrt{N} $$ , as well as instanton contributions. Using SL(2,ℤ) transformations, our results can also be applied to Wilson-’t Hooft line defects dual to extended (p,q)-strings in the bulk. We analyze features of these integrated correlators in the weak coupling expansion by comparing with open-closed amplitudes of type IIB string theory on AdS5× S5, as well as in its flat space limit. We predict new higher-derivative interaction vertices on the D1-brane and, more generally, on (p,q)-strings.more » « less
-
A<sc>bstract</sc> We present a quantum M2 brane computation of the instanton prefactor in the leading non-perturbative contribution to the ABJM 3-sphere free energy at largeNand fixed levelk. Using supersymmetric localization, such instanton contribution was found earlier to take the form$$ {F}^{inst}\left(N,k\right)=-{\left({\sin}^2\frac{2\pi }{k}\right)}^{-1}\exp \left(-2\pi \sqrt{\frac{2N}{k}}\right)+.\dots $$ The exponent comes from the action of an M2 brane instanton wrapped onS3/ℤk, which represents the M-theory uplift of the ℂP1instanton in type IIA string theory on AdS4× ℂP3. The IIA string computation of the leading largekterm in the instanton prefactor was recently performed in arXiv:2304.12340. Here we find that the exact value of the prefactor$$ {\left({\sin}^2\frac{2\pi }{k}\right)}^{-1} $$ is reproduced by the 1-loop term in the M2 brane partition function expanded near theS3/ℤkinstanton configuration. As in the Wilson loop example in arXiv:2303.15207, the quantum M2 brane computation is well defined and produces a finite result in exact agreement with localization.more » « less
An official website of the United States government

