Educational data mining has allowed for large improvements in educational outcomes and understanding of educational processes. However, there remains a constant tension between educational data mining advances and protecting student privacy while using educational datasets. Publicly available datasets have facilitated numerous research projects while striving to preserve student privacy via strict anonymization protocols (e.g., k-anonymity); however, little is known about the relationship between anonymization and utility of educational datasets for downstream educational data mining tasks, nor how anonymization processes might be improved for such tasks. We provide a framework for strictly anonymizing educational datasets with a focus on improving downstream performance in common tasks such as student outcome prediction. We evaluate our anonymization framework on five diverse educational datasets with machine learning-based downstream task examples to demonstrate both the effect of anonymization and our means to improve it. Our method improves downstream machine learning accuracy versus baseline data anonymization by 30.59%, on average, by guiding the anonymization process toward strategies that anonymize the least important information while leaving the most valuable information intact.
more »
« less
Every Anonymization Begins with k: A Game-Theoretic Approach for Optimized k Selection in k-Anonymization
- Award ID(s):
- 1739032
- PAR ID:
- 10206355
- Date Published:
- Journal Name:
- 2020 International Conference on Advances in Computing and Communication Engineering (ICACCE)
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deaf signers who wish to communicate in their native language frequently share videos on the Web. However, videos cannot preserve privacy—as is often desirable for discussion of sensitive topics—since both hands and face convey critical linguistic information and therefore cannot be obscured without degrading communication. Deaf signers have expressed interest in video anonymization that would preserve linguistic content. However, attempts to develop such technology have thus far shown limited success. We are developing a new method for such anonymization, with input from ASL signers. We modify a motion-based image animation model to generate high-resolution videos with the signer identity changed, but with preservation of linguistically significant motions and facial expressions. An asymmetric encoder-decoder structured image generator is used to generate the high-resolution target frame from the low-resolution source frame based on the optical flow and confidence map. We explicitly guide the model to attain clear generation of hands and face by using bounding boxes to improve the loss computation. FID and KID scores are used for evaluation of the realism of the generated frames. This technology shows great potential for practical applications to benefit deaf signers.more » « less
-
Deaf signers who wish to communicate in their native language frequently share videos on the Web. However, videos cannot preserve privacy—as is often desirable for discussion of sensitive topics—since both hands and face convey critical linguistic information and therefore cannot be obscured without degrading communication. Deaf signers have expressed interest in video anonymization that would preserve linguistic content. However, attempts to develop such technology have thus far shown limited success. We are developing a new method for such anonymization, with input from ASL signers. We modify a motion-based image animation model to generate high-resolution videos with the signer identity changed, but with preservation of linguistically significant motions and facial expressions. An asymmetric encoder-decoder structured image generator is used to generate the high-resolution target frame from the low-resolution source frame based on the optical flow and confidence map. We explicitly guide the model to attain clear generation of hands and face by using bounding boxes to improve the loss computation. FID and KID scores are used for evaluation of the realism of the generated frames. This technology shows great potential for practical applications to benefit deaf signers.more » « less
An official website of the United States government

