skip to main content


Title: Elucidating the impact of molecular weight on morphology, charge transport, photophysics and performance of all-polymer solar cells
Understanding the influence of polymer molecular weight on the morphology, photophysics, and photovoltaic properties of polymer solar cells is central to further advances in the design, processing, performance and optimization of the materials and devices for large scale applications. We have synthesized six number-average molecular weight ( M n ) values (21–127 kDa) of biselenophene–naphthalenediimide copolymer ( PNDIBS ) via direct heteroarylation polymerization and used them to investigate the effects of the acceptor polymer molecular weight on the charge transport, blend photophysics, blend morphology, and photovoltaic properties of all-polymer solar cells (all-PSCs) based on PNDIBS and the donor polymer PBDB-T . The short-circuit current and power conversion efficiency (PCE) of the PBDB-T : PNDIBS blend devices were found to increase with increasing M n until reaching peaks at an optimal molecular weight of 55 kDa and then decreased with further increases in M n . The maximum PCE of 10.2% observed at the optimal M n value of 55 kDa coincided with optimal blend charge transport properties, blend photophysics, and blend morphology at this critical molecular weight. Compared to the bi-continuous network of ∼5.5–6.5 nm crystalline domains with predominantly face-on molecular orientations observed at 55 kDa, a relatively disordered microstructure with larger scale phase separation was evident at higher M n while more finely packed crystalline domains were seen at 21 kDa. The sensitivity of the device efficiency to the active layer thickness was found to also depend on the PNDIBS M n value. These results highlight the importance of tuning the molecular weight of the polymer components to optimize the morphology, charge transport, photophysics and efficiency of all-polymer solar cells. The results also provide new insights on structure–property relationships for a promising n-type semiconducting copolymer.  more » « less
Award ID(s):
1708450
PAR ID:
10206370
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
8
Issue:
40
ISSN:
2050-7488
Page Range / eLocation ID:
21070 to 21083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fluorinated molecule 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) and its derivatives have been used in polymer:fullerene solar cells primarily as a dopant to optimize the electrical properties and device performance. However, the underlying mechanism and generality of how F4‐TCNQ affects device operation and possibly the morphology is poorly understood, particularly for emerging nonfullerene organic solar cells. In this work, the influence of F4‐TCNQ on the blend film morphology and photovoltaic performance of nonfullerene solar cells processed by a single halogen‐free solvent is systematically investigated using a set of morphological and electrical characterizations. In solar cells with a high‐performance polymer:small molecule blend FTAZ:IT‐M, F4‐TCNQ has a negligibly small effect on the molecular packing and surface characteristics, while it clearly affects the electronic properties and mean‐square composition variation of the bulk. In comparison to the control devices with an average power conversion efficiency (PCE) of 11.8%, inclusion of a trace amount of F4‐TCNQ in the active layer has improved device fill factor and current density, which has resulted into a PCE of 12.4%. Further increase in F4‐TCNQ content degrades device performance. This investigation aims at delineating the precise role of F4‐TCNQ in nonfullerene bulk heterojunction films, and thereby establishing a facile approach to fabricate highly optimized nonfullerene solar cells.

     
    more » « less
  2. Abstract

    Molecular aggregation and crystallization during film coating play a crucial role in the realization of high‐performing organic photovoltaics. Strong intermolecular interactions and high solid‐state crystallinity are beneficial for charge transport. However, fast crystallization during thin‐film drying often limits the formation of the finely phase‐separated morphology required for efficient charge generation. Herein, the authors show that twisted acceptor‐donor‐acceptor (A‐D‐A) type compounds, containing an indacenodithiophene (IDT) electron‐rich core and two naphthalenediimide (NDI) electron‐poor units, leads to formation of mostly amorphous phases in the as‐cast film, which can be readily converted into more crystalline domains by means of thermal annealing. This design strategy solves the aforementioned conundrum, leading to an optimal morphology in terms of reduced donor/acceptor domain‐separation sizes (ca. 13 nm) and increased packing order. Solar cells based on these acceptors with a PBDB‐T polymer donor show a power conversion efficiency over 10% and stable morphology, which results from the combined properties of desirable excited‐state dynamics, high charge mobility, and optimal aggregation/crystallization characteristics. These results demonstrate that the twisted A‐D‐A motif featuring thermally‐induced crystallization behavior is indeed a promising alternative design approach toward more morphologically robust materials for efficient organic photovoltaics.

     
    more » « less
  3. Abstract

    The synthesis and characterization of new semiconducting materials is essential for developing high‐efficiency organic solar cells. Here, the synthesis, physiochemical properties, thin film morphology, and photovoltaic response of ITN‐F4 and ITzN‐F4, the first indacenodithienothiophene nonfullerene acceptors that combine π‐extension and fluorination, are reported. The neat acceptors and bulk‐heterojunction blend films with fluorinated donor polymer poly{[4,8‐bis[5‐(2‐ethylhexyl)‐4‐fluoro‐2‐thienyl]benzo[1,2‐b:4,5‐b′]‐dithiophene‐2,6‐diyl]‐alt‐[2,5‐thiophenediyl[5,7‐bis(2‐ethylhexyl)‐4,8‐dioxo‐4H,8H‐benzo[1,2‐c:4,5‐c′]dithiophene‐1,3‐diyl]]} (PBDB‐TF, also known as PM6) are investigated using a battery of techniques, including single crystal X‐ray diffraction, fs transient absorption spectroscopy (fsTA), photovoltaic response, space‐charge‐limited current transport, impedance spectroscopy, grazing incidence wide angle X‐ray scattering, and density functional theory level computation. ITN‐F4 and ITzN‐F4 are found to provide power conversion efficiencies greater and internal reorganization energies less than their non‐π‐extended and nonfluorinated counterparts when paired with PBDB‐TF. Additionally, ITN‐F4 and ITzN‐F4 exhibit favorable bulk‐heterojunction relevant single crystal packing architectures. fsTA reveals that both ITN‐F4 and ITzN‐F4 undergo ultrafast hole transfer (<300 fs) in films with PBDB‐TF, despite excimer state formation in both the neat and blend films. Taken together and in comparison to related structures, these results demonstrate that combined fluorination and π‐extension synergistically promote crystallographic π‐face‐to‐face packing, increase crystallinity, reduce internal reorganization energies, increase interplanar π–π electronic coupling, and increase power conversion efficiency.

     
    more » « less
  4. Abstract

    In its initial phase in 2009, the inorganic‐organic hybrid perovskite solar cells (PSCs) delivered a 3.8% power conversion efficiency (PCE), which is far below the present 25.7% PCE obtained in 2022. The significant improvement of the efficiency of PSCs in such a short period has stimulated significant interest in the photovoltaic community. However, the performance of current PSCs is behind the commercially available and widely used solar cells in terms of stability and scalability. Among various commonly studied perovskite materials, methylammonium lead iodide (MAPbI3) is the most widely studied. This review will focus on the common solar cell structures (mesoporous, inverted planar p‐i‐n, planar n‐i‐p) using MAPbI3perovskite as an active layer and the effect of these solar cell structures on their performances. Furthermore, some commonly‐used strategies are outlined for improving the device performance, such as optimizing the deposition technique of the charge transporting and the active layers, modifying the properties of the carrier transporting layer and the perovskite layer by interface engineering and doping, optimizing the perovskite surface morphology, along with others. This article will also discuss the hole transport free and electron transport free MAPbI3PSCs.

     
    more » « less
  5. Abstract

    Realizing efficient all‐polymer solar cell (APSC) acceptors typically involves increased building block synthetic complexity, hence potentially unscalable syntheses and/or prohibitive costs. Here we report the synthesis, characterization, and implementation in APSCs of three new polymer acceptorsP1P3using a scalable donor fragment, bis(2‐octyldodecyl)anthra[1,2‐b : 5,6‐b’]dithiophene‐4,10‐dicarboxylate (ADT) co‐polymerized with the high‐efficiency acceptor units, NDI, Y6, and IDIC. All three copolymers have comparable photophysics to known polymers; however, APSCs fabricated by blendingP1,P2andP3with donor polymersPM5andPM6exhibit modest power conversion efficiencies (PCEs), with the championP2‐basedAPSCachieving PCE=5.64 %. Detailed morphological and microstructural analysis by AFM and GIWAXS reveal a non‐optimal APSC active layer morphology, which suppresses charge transport. Despite the modest efficiencies, these APSCs demonstrate the feasibility of usingADTas a scalable and inexpensive electron rich/donor building block for APSCs.

     
    more » « less