Natural language generators for task-oriented dialog should be able to vary the style of the output utterance while still effectively realizing the system dialog actions and their associated semantics. While the use of neural generation for training the response generation component of conversational agents promises to simplify the process of producing high quality responses in new domains, to our knowledge, there has been very little investigation of neural generators for task-oriented dialog that can vary their response style and we know of no experiments on models that can generate responses that are different in style from those seen during training, while still maintaining semantic fidelity to the input meaning representation. Here, we show that a model that is trained to achieve a single stylistic personality target can produce outputs that combine stylistic targets. We carefully evaluate the multivoice outputs for both semantic fidelity and for similarities to and differences from the linguistic features that characterize the original training style. We show that contrary to our predictions, the learned models do not always simply interpolate model parameters, but rather produce styles that are distinct and novel from the personalities they were trained on.
more »
« less
Curate and Generate: A Corpus and Method for Joint Control of Semantics and Style in Neural NLG
Neural natural language generation (NNLG) from structured meaning representations has become increasingly popular in recent years. While we have seen progress with generating syntactically correct utterances that preserve semantics, various shortcomings of NNLG systems are clear: new tasks require new training data which is not available or straightforward to acquire, and model outputs are simple and may be dull and repetitive. This paper addresses these two critical challenges in NNLG by: (1) scalably (and at no cost) creating training datasets of parallel meaning representations and reference texts with rich style markup by using data from freely available and naturally descriptive user reviews, and (2) systematically exploring how the style markup enables joint control of semantic and stylistic aspects of neural model output. We present YelpNLG, a corpus of 300,000 rich, parallel meaning representations and highly stylistically varied reference texts spanning different restaurant attributes, and describe a novel methodology that can be scalably reused to generate NLG datasets for other domains. The experiments show that the models control important aspects, including lexical choice of adjectives, output length, and sentiment, allowing the models to successfully hit multiple style targets without sacrificing semantics.
more »
« less
- Award ID(s):
- 1748056
- PAR ID:
- 10206441
- Date Published:
- Journal Name:
- Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
- Page Range / eLocation ID:
- 5938 to 5951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Edges in many real-world social/information networks are associated with rich text information (e.g., user-user communications or user-product reviews). However, mainstream network representation learning models focus on propagating and aggregating node attributes, lacking specific designs to utilize text semantics on edges. While there exist edge-aware graph neural networks, they directly initialize edge attributes as a feature vector, which cannot fully capture the contextualized text semantics of edges. In this paper, we propose Edgeformers, a framework built upon graph-enhanced Transformers, to perform edge and node representation learning by modeling texts on edges in a contextualized way. Specifically, in edge representation learning, we inject network information into each Transformer layer when encoding edge texts; in node representation learning, we aggregate edge representations through an attention mechanism within each node’s ego-graph. On five public datasets from three different domains, Edgeformers consistently outperform state-of-the-art baselines in edge classification and link prediction, demonstrating the efficacy in learning edge and node representations, respectively.more » « less
-
Recent work learns contextual representations of source code by reconstructing tokens from their context. For downstream semantic understanding tasks like code clone detection, these representations should ideally capture program functionality. However, we show that the popular reconstruction-based RoBERTa model is sensitive to source code edits, even when the edits preserve semantics. We propose ContraCode: a contrastive pre-training task that learns code functionality, not form. ContraCode pre-trains a neural network to identify functionally similar variants of a program among many non-equivalent distractors. We scalably generate these variants using an automated source-to-source compiler as a form of data augmentation. Contrastive pre-training outperforms RoBERTa on an adversarial code clone detection benchmark by 39% AUROC. Surprisingly, improved adversarial robustness translates to better accuracy over natural code; ContraCode improves summarization and TypeScript type inference accuracy by 2 to 13 percentage points over competitive baselines. All source is available at https://github.com/parasj/contracode.more » « less
-
Despite Uniform Meaning Representation’s (UMR) potential for cross-lingual semantics, limited annotated data has hindered its adoption. There are large datasets of English AMRs (Abstract Meaning Representations), but the process of converting AMR graphs to UMR graphs is non-trivial. In this paper we address a complex piece of that conversion process, namely cases where one AMR role can be mapped to multiple UMR roles through a non-deterministic process. We propose a neuro-symbolic method for role conversion, integrating animacy parsing and logic rules to guide a neural network, and minimizing human intervention. On test data, the model achieves promising accuracy, highlighting its potential to accelerate AMR-to-UMR conversion. Future work includes expanding animacy parsing, incorporating human feedback, and applying the method to broader aspects of conversion. This research demonstrates the benefits of combining symbolic and neural approaches for complex semantic tasks.more » « less
-
Authorship Attribution (AA) and Authorship Obfuscation (AO) are two competing tasks of increasing importance in privacy research. Modern AA leverages an author's consistent writing style to match a text to its author using an AA classifier. AO is the corresponding adversarial task, aiming to modify a text in such a way that its semantics are preserved, yet an AA model cannot correctly infer its authorship. To address privacy concerns raised by state-of-the-art (SOTA) AA methods,new AO methods have been proposed but remain largely impractical to use due to their prohibitively slow training and obfuscation speed, often taking hours.To this challenge, we propose a practical AO method, ALISON, that (1) dramatically reduces training/obfuscation time, demonstrating more than 10x faster obfuscation than SOTA AO methods, (2) achieves better obfuscation success through attacking three transformer-based AA methods on two benchmark datasets, typically performing 15% better than competing methods, (3) does not require direct signals from a target AA classifier during obfuscation, and (4) utilizes unique stylometric features, allowing sound model interpretation for explainable obfuscation. We also demonstrate that ALISON can effectively prevent four SOTA AA methods from accurately determining the authorship of ChatGPT-generated texts, all while minimally changing the original text semantics. To ensure the reproducibility of our findings, our code and data are available at: https://github.com/EricX003/ALISON.more » « less
An official website of the United States government

