skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Edgeformers: Graph-Empowered Transformers for Representation Learning on Textual-Edge Networks
Edges in many real-world social/information networks are associated with rich text information (e.g., user-user communications or user-product reviews). However, mainstream network representation learning models focus on propagating and aggregating node attributes, lacking specific designs to utilize text semantics on edges. While there exist edge-aware graph neural networks, they directly initialize edge attributes as a feature vector, which cannot fully capture the contextualized text semantics of edges. In this paper, we propose Edgeformers, a framework built upon graph-enhanced Transformers, to perform edge and node representation learning by modeling texts on edges in a contextualized way. Specifically, in edge representation learning, we inject network information into each Transformer layer when encoding edge texts; in node representation learning, we aggregate edge representations through an attention mechanism within each node’s ego-graph. On five public datasets from three different domains, Edgeformers consistently outperform state-of-the-art baselines in edge classification and link prediction, demonstrating the efficacy in learning edge and node representations, respectively.  more » « less
Award ID(s):
1741317 1956151 1704532
PAR ID:
10478773
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
OpenReview.net
Date Published:
Journal Name:
The Eleventh International Conference on Learning Representations, {ICLR} 2023
Subject(s) / Keyword(s):
Edgeformers Representation Learning Textual-Rich Networks Transformers Machine Learning
Format(s):
Medium: X
Location:
Kigali, Rwanda
Sponsoring Org:
National Science Foundation
More Like this
  1. Proc. 2023 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (Ed.)
    Representation learning on networks aims to derive a meaningful vector representation for each node, thereby facilitating downstream tasks such as link prediction, node classification, and node clustering. In heterogeneous text-rich networks, this task is more challenging due to (1) presence or absence of text: Some nodes are associated with rich textual information, while others are not; (2) diversity of types: Nodes and edges of multiple types form a heterogeneous network structure. As pretrained language models (PLMs) have demonstrated their effectiveness in obtaining widely generalizable text representations, a substantial amount of effort has been made to incorporate PLMs into representation learning on text-rich networks. However, few of them can jointly consider heterogeneous structure (network) information as well as rich textual semantic information of each node effectively. In this paper, we propose Heterformer, a Heterogeneous Network-Empowered Transformer that performs contextualized text encoding and heterogeneous structure encoding in a unified model. Specifically, we inject heterogeneous structure information into each Transformer layer when encoding node texts. Meanwhile, Heterformer is capable of characterizing node/edge type heterogeneity and encoding nodes with or without texts. We conduct comprehensive experiments on three tasks (i.e., link prediction, node classification, and node clustering) on three large-scale datasets from different domains, where Heterformer outperforms competitive baselines significantly and consistently. 
    more » « less
  2. Attributed network embedding aims to learn lowdimensional vector representations for nodes in a network, where each node contains rich attributes/features describing node content. Because network topology structure and node attributes often exhibit high correlation, incorporating node attribute proximity into network embedding is beneficial for learning good vector representations. In reality, large-scale networks often have incomplete/missing node content or linkages, yet existing attributed network embedding algorithms all operate under the assumption that networks are complete. Thus, their performance is vulnerable to missing data and suffers from poor scalability. In this paper, we propose a Scalable Incomplete Network Embedding (SINE) algorithm for learning node representations from incomplete graphs. SINE formulates a probabilistic learning framework that separately models pairs of node-context and node-attribute relationships. Different from existing attributed network embedding algorithms, SINE provides greater flexibility to make the best of useful information and mitigate negative effects of missing information on representation learning. A stochastic gradient descent based online algorithm is derived to learn node representations, allowing SINE to scale up to large-scale networks with high learning efficiency. We evaluate the effectiveness and efficiency of SINE through extensive experiments on real-world networks. Experimental results confirm that SINE outperforms state-of-the-art baselines in various tasks, including node classification, node clustering, and link prediction, under settings with missing links and node attributes. SINE is also shown to be scalable and efficient on large-scale networks with millions of nodes/edges and high-dimensional node features. 
    more » « less
  3. null (Ed.)
    Multiplex networks are complex graph structures in which a set of entities are connected to each other via multiple types of relations, each relation representing a distinct layer. Such graphs are used to investigate many complex biological, social, and technological systems. In this work, we present a novel semi-supervised approach for structure-aware representation learning on multiplex networks. Our approach relies on maximizing the mutual information between local node-wise patch representations and label correlated structure-aware global graph representations to model the nodes and cluster structures jointly. Specifically, it leverages a novel cluster-aware, node-contextualized global graph summary generation strategy for effective joint-modeling of node and cluster representations across the layers of a multiplex network. Empirically, we demonstrate that the proposed architecture outperforms state-of-the-art methods in a range of tasks: classification, clustering, visualization, and similarity search on seven real-world multiplex networks for various experiment settings. 
    more » « less
  4. This work considers the task of representation learning on the attributed relational graph (ARG). Both the nodes and edges in an ARG are associated with attributes/features allowing ARGs to encode rich structural information widely observed in real applications. Existing graph neural networks offer limited ability to capture complex interactions within local structural contexts, which hinders them from taking advantage of the expression power of ARGs. We propose motif convolution module (MCM), a new motif-based graph representation learning technique to better utilize local structural information. The ability to handle continuous edge and node features is one of MCM’s advantages over existing motif-based models. MCM builds a motif vocabulary in an unsupervised way and deploys a novel motif convolution operation to extract the local structural context of individual nodes, which is then used to learn higher level node representations via multilayer perceptron and/or message passing in graph neural networks. When compared with other graph learning approaches to classifying synthetic graphs, our approach is substantially better at capturing structural context. We also demonstrate the performance and explainability advantages of our approach by applying it to several molecular benchmarks. 
    more » « less
  5. null (Ed.)
    Existing Graph Neural Network (GNN) methods that learn inductive unsupervised graph representations focus on learning node and edge representations by predicting observed edges in the graph. Although such approaches have shown advances in downstream node classification tasks, they are ineffective in jointly representing larger k-node sets, k > 2. We propose MHM-GNN, an inductive unsupervised graph representation approach that combines joint k-node representations with energy-based models (hypergraph Markov networks) and GNNs. To address the intractability of the loss that arises from this combination, we endow our optimization with a loss upper bound using a finite-sample unbiased Markov Chain Monte Carlo estimator. Our experiments show that the unsupervised MHM-GNN representations of MHM-GNN produce better unsupervised representations than existing approaches from the literature. 
    more » « less