skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Importance of a Filament-like Structure in Aerial Dispersal and the Rarefaction Effect of Air Molecules on a Nanoscale Fiber: Detailed Physics in Spiders’ Ballooning
Synopsis Many flying insects utilize a membranous structure for flight, which is known as a “wing.” However, some spiders use silk fibers for their aerial dispersal. It is well known that spiders can disperse over hundreds of kilometers and rise several kilometers above the ground in this way. However, little is known about the ballooning mechanisms of spiders, owing to the lack of quantitative data. Recently, Cho et al. discovered previously unknown information on the types and physical properties of spiders’ ballooning silks. According to the data, a crab spider weighing 20 mg spins 50–60 ballooning silks simultaneously, which are about 200 nm thick and 3.22 m long for their flight. Based on these physical dimensions of ballooning silks, the significance of these filament-like structures is explained by a theoretical analysis reviewing the fluid-dynamics of an anisotropic particle (like a filament or a high-slender body). (1) The filament-like structure is materially efficient geometry to produce (or harvest, in the case of passive flight) fluid-dynamic force in a low Reynolds number flow regime. (2) Multiple nanoscale fibers are the result of the physical characteristics of a thin fiber, the drag of which is proportional to its length but not to its diameter. Because of this nonlinear characteristic of a fiber, spinning multiple thin ballooning fibers is, for spiders, a better way to produce drag forces than spinning a single thick spider silk, because spiders can maximize their drag on the ballooning fibers using the same amount of silk dope. (3) The mean thickness of fibers, 200 nm, is constrained by the mechanical strength of the ballooning fibers and the rarefaction effect of air molecules on a nanoscale fiber, because the slip condition on a fiber could predominate if the thickness of the fiber becomes thinner than 100 nm.  more » « less
Award ID(s):
1930744
PAR ID:
10206553
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
60
Issue:
4
ISSN:
1540-7063
Page Range / eLocation ID:
864 to 875
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many natural silks produced by spiders and insects are unique materials in their exceptional toughness and tensile strength, while being lightweight and biodegradable–properties that are currently unparalleled in synthetic materials. Myriad approaches have been attempted to prepare artificial silks from recombinant spider silk spidroins but have each failed to achieve the advantageous properties of the natural material. This is because of an incomplete understanding of the in vivo spidroin-to-fiber spinning process and, particularly, because of a lack of knowledge of the true morphological nature of spidroin nanostructures in the precursor dope solution and the mechanisms by which these nanostructures transform into micrometer-scale silk fibers. Herein we determine the physical form of the natural spidroin precursor nanostructures stored within spider glands that seed the formation of their silks and reveal the fundamental structural transformations that occur during the initial stages of extrusion en route to fiber formation. Using a combination of solution phase diffusion NMR and cryogenic transmission electron microscopy (cryo-TEM), we reveal direct evidence that the concentrated spidroin proteins are stored in the silk glands of black widow spiders as complex, hierarchical nanoassemblies (∼300 nm diameter) that are composed of micellar subdomains, substructures that themselves are engaged in the initial nanoscale transformations that occur in response to shear. We find that the established micelle theory of silk fiber precursor storage is incomplete and that the first steps toward liquid crystalline organization during silk spinning involve the fibrillization of nanoscale hierarchical micelle subdomains. 
    more » « less
  2. Abstract Cribellate silks, produced by ancient spiders, are fascinating because they feature a highly sophisticated, 3D hierarchical structure consisting of filaments with different diameters and shapes. Here, the smallest and thinnest constituents of the cribellate silk are investigated: nanofibrils that form a dense mesh that is supported by larger fibers. Analysis of their structure via atomic force and transmission electron microscopies shows that they are flattened fibrils, only ≈5 nm thick — thinner than any other natural spider silk fibrils previously reported. In this work, the first mechanical tensile testing experiments on these fibrils are carried out, which reveals that the fibrils show an outstanding extensibility of at least 1100%, almost twice as much as the most stretchable spider silk previously reported. Based on these extraordinary findings, this work significantly expands the parameter space of materials properties attainable by spider silks and provides further insights into their nanomechanics. 
    more » « less
  3. Peripheral nerve reconstruction through the employment of nerve guidance conduits with Trichonephila dragline silk as a luminal filling has emerged as an outstanding preclinical alternative to avoid nerve autografts. Yet, it remains unknown whether the outcome is similar for silk fibers harvested from other spider species. This study compares the regenerative potential of dragline silk from two orb‐weaving spiders, Trichonephila naurata and Nuctenea umbratica, as well as the silk of the jumping spider Phidippus regius. Proliferation, migration, and transcriptomic state of Schwann cells seeded on these silks are investigated. In addition, fiber morphology, primary protein structure, and mechanical properties are studied. The results demonstrate that the increased velocity of Schwann cells on Phidippus regius fibers can be primarily attributed to the interplay between the silk's primary protein structure and its mechanical properties. Furthermore, the capacity of silk fibers to trigger cells toward a gene expression profile of a myelinating Schwann cell phenotype is shown. The findings for the first time allow an in‐depth comparison of the specific cellular response to various native spider silks and a correlation with the fibers’ material properties. This knowledge is essential to open up possibilities for targeted manufacturing of synthetic nervous tissue replacement. 
    more » « less
  4. Abstract Darwin’s bark spider (Caerostris darwini) produces giant orb webs from dragline silk that can be twice as tough as other silks, making it the toughest biological material. This extreme toughness comes from increased extensibility relative to other draglines. We showC. darwinidragline-producing major ampullate (MA) glands highly express a novel silk gene transcript (MaSp4) encoding a protein that diverges markedly from closely related proteins and contains abundant proline, known to confer silk extensibility, in a unique GPGPQ amino acid motif. This suggestsC. darwinievolved distinct proteins that may have increased its dragline’s toughness, enabling giant webs.Caerostris darwini’sMA spinning ducts also appear unusually long, potentially facilitating alignment of silk proteins into extremely tough fibers. Thus, a suite of novel traits from the level of genes to spinning physiology to silk biomechanics are associated with the unique ecology of Darwin’s bark spider, presenting innovative designs for engineering biomaterials. 
    more » « less
  5. Abstract Spiders amplify their physical capabilities by synthesizing multiple high performing silks. Renowned for its toughness, major ampullate (MA) silk composes the spiderweb frame, providing support and absorbing high-energy impacts. In ecribellate orb-weavers, proline-rich motifs in MaSp2 proteins of MA silk are linked to a range of mechanical properties, including extensibility, elasticity, stiffness, and supercontraction. We show a modification of these motifs outside of this clade in a spider that constructs a spring-loaded web. The triangle weaver spider Hyptiotes cavatus (family Uloboridae) stores energy in the support lines of its triangular web, then rapidly releases the tension to catapult forward, collapsing the web around prey. Hyptiotes has an expanded set of MaSp2 genes which encode proteins with far higher proline contents than typical MaSp2. The predominant GPGPQ motifs present in Hyptiotes spidroins also occur abundantly in MaSp sequences of distantly related spiders that produce the most extensible dragline, implying silk protein convergence. Proline-rich MaSp2 proteins constitute half of all MA gland expression in Hyptiotes, and we show that the resulting fibers are the most proline-rich spider silk measured to date. This unique silk composition suggests a functional importance that may facilitate the spring-loaded prey capture mechanism of this species' web and may inspire the design of novel biomaterials using protein engineering. 
    more » « less