skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Non-Reciprocal Surface Acoustic Wave Filter Based on Asymmetrical Delay Lines and Parametric Interactions
Acoustic devices have played a major role in telecommunications for decades as the leading technology for filtering in RF and microwave frequencies. While filter requirements for insertion loss and bandwidth become more stringent, more functionality is desired for many applications to improve overall system level performance. For instance, a filter with non-reciprocal transmission can minimize losses due to mismatch and protect the source from reflections while also performing its filtering duties. A device such as this one was originally researched by scientists decades ago. These devices were based on the acoustoelectric effect where surface acoustic waves (SAW) traveling in the same direction are as drift carriers in a nearby semiconductor are amplified. While several experiments were successfully demonstrated in [1], [2], [3]. these devices suffered from extremely high operating electric fields and noise figure [4], [5]. In the past few years, new techniques have been developed for implementing non-reciprocal devices such as isolators and circulators without utilizing magnetic materials [6], [7], [8], [9]. The most popular technique has been spatio-temporal modulation (STM) where commutated clock signals synchronized with delay elements result in non-reciprocal transmission through the network. STM has also been adapted by researchers to create non-reciprocal filters. The work in [10] utilizes 4 clocks signals to obtain a non-reciprocal filter with an insertion loss of -6.6 dB an isolation of 25.4 dB. Another filter demonstrated in [11] utilizes 6 synchronized clock signals to obtain a non-reciprocal filter with an insertion loss of -5.6 dB and an Isolation of 20 dB. In this work, a novel non-reciprocal topology is explored with the use of only one modulation signal. The design is based on asymmetrical SAW delay lines with a parametric amplifier. The device can operate in two different modes: phase coherent mode and phase incoherent mode. In phase coherent mode, the device is capable of over +12 dB of gain and 20.2 dB of isolation. A unique feature of this mode is that the phase of the pump signal can be utilized to tune the frequency response of the filter. Under the phase-incoherent mode, the pump frequency remains constant and the device behaves as a normal filter with non-reciprocal transmission exhibiting over +7 dB of gain and 17.33 dB of isolation. While the tuning capability is lost in this mode, phase-coherence is no longer necessary so the device can be utilized in most filtering applications.  more » « less
Award ID(s):
1641100
PAR ID:
10206698
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)
Page Range / eLocation ID:
1250 to 1253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical isolators are an essential component of photonic systems. Current integrated optical isolators have limited bandwidths due to stringent phase-matching conditions, resonant structures, or material absorption. Here, we demonstrate a wideband integrated optical isolator in thin-film lithium niobate photonics. We use dynamic standing-wave modulation in a tandem configuration to break Lorentz reciprocity and achieve isolation. We measure an isolation ratio of 15 dB and insertion loss below 0.5 dB for a continuous wave laser input at 1550 nm. In addition, we experimentally show that this isolator can simultaneously operate at visible and telecom wavelengths with comparable performance. Isolation bandwidths up to ∼100 nm can be achieved simultaneously at both visible and telecom wavelengths, limited only by the modulation bandwidth. Our device’s dual-band isolation, high flexibility, and real-time tunability can enable novel non-reciprocal functionality on integrated photonic platforms. 
    more » « less
  2. Abstract This work is on the design, fabrication and characterization of a hexagonal ferrite band-pass filter that can be tuned either with a magnetic field or an electric field. The filter operation is based on a straight-edge Y-type hexagonal ferrite resonator symmetrically coupled to the input and output microstrip transmission lines. The Zn2Yfilter demonstrated magnetic field tunability in the 8–12 GHz frequency range by applying an in-plane bias magnetic fieldH0provided by a built-in permanent magnet. The insertion loss and 3 dB bandwidth within this band were 8.6 ± 0.4 dB and 350 ± 40 MHz, respectively. The electric fieldEtunability of the pass-band of the device was facilitated by the nonlinear magnetoelectric effect (NLME) in the ferrite. TheE-tuning of the center frequency of the filter by (1150 ± 90) MHz was obtained for an input DC electric power of 200 mW. With efforts directed at a significant reduction in the insertion loss, the compact and power efficient magnetic and electric field tunable Zn2Y band-pass filter has the potential for use in novel reconfigurable RF/microwave devices and communication systems. 
    more » « less
  3. Non-volatile radio-frequency (RF) switches based on hexagonal boron nitride (hBN) are realized for the first time with low insertion loss (≤ 0.2 dB) and high isolation (≥ 15 dB) up to 110 GHz. Crystalline hBN enables the thinnest RF switch device with a single monolayer (~0.33 nm) as the memory layer owing to its robust layered structure. It affords ~20 dBm power handling, 10 dB higher compared to MoS 2 switches due to its wider bandgap (~6 eV). Importantly, operating frequencies cover the RF, 5G, and mm-wave bands, making this a promising low-power switch for diverse communication and connectivity front-end systems. Compared to other switch technologies based on MEMS, memristor, and phase-change memory (PCM), hBN switches offer a promising combination of non-volatility, nanosecond switching, power handling, high figure-of-merit cutoff frequency (43 THz), and heater-less ambient integration. Our pioneering work suggests that atomically-thin nanomaterials can be good device candidates for 5G and beyond. 
    more » « less
  4. This paper presents a new concept of passive phase shifters based on manipulating propagation delay through two parallel transmission lines periodically connected via digitally controlled switch networks. The proposed approach enables precise phase control and flat amplitude response across different phase settings. The prototype IC is fabricated in a 45 nm RFSOI process and occupies only 0.033 mm^2 . The phase control operates with 11.25°steps over 360° at 140 GHz while maintaining an RMS phase error of 1.2°. The insertion loss is 11.5 dB with < ±0.8 dB variation. Among published D-band phase shifters, this work achieves the lowest RMS phase error and reports bi-directional phase control over 360° and calibration-free operation. 
    more » « less
  5. Programmable and reconfigurable optics hold significant potential for transforming a broad spectrum of applications, spanning space explorations to biomedical imaging, gas sensing, and optical cloaking. The ability to adjust the optical properties of components like filters, lenses, and beam steering devices could result in dramatic reductions in size, weight, and power consumption in future optoelectronic devices. Among the potential candidates for reconfigurable optics, chalcogenide‐based phase change materials (PCMs) offer great promise due to their non‐volatile and analogue switching characteristics. Although PCM have found widespread use in electronic data storage, these memory devices are deeply sub‐micron‐sized. To incorporate phase change materials into free‐space optical components, it is essential to scale them up to beyond several hundreds of microns while maintaining reliable switching characteristics. This study demonstrated a non‐mechanical, non‐volatile transmissive filter based on low‐loss PCMs with a 200 × 200 µm2switching area. The device/metafilter can be consistently switched between low‐ and high‐transmission states using electrical pulses with a switching contrast ratio of 5.5 dB. The device was reversibly switched for 1250 cycles before accelerated degradation took place. The work represents an important step toward realizing free‐space reconfigurable optics based on PCMs. 
    more » « less