Current integrated optical isolators have limited bandwidths due to stringent phase-matching, resonant structures, or absorption. We demonstrate broadband optical isolation in thin-film lithium niobate that simultaneously achieves∼100 nm isolation bandwidth at visible and telecom wavelengths.
more »
« less
Visible-telecom tunable dual-band optical isolator based on dynamic modulation in thin-film lithium niobate
Optical isolators are an essential component of photonic systems. Current integrated optical isolators have limited bandwidths due to stringent phase-matching conditions, resonant structures, or material absorption. Here, we demonstrate a wideband integrated optical isolator in thin-film lithium niobate photonics. We use dynamic standing-wave modulation in a tandem configuration to break Lorentz reciprocity and achieve isolation. We measure an isolation ratio of 15 dB and insertion loss below 0.5 dB for a continuous wave laser input at 1550 nm. In addition, we experimentally show that this isolator can simultaneously operate at visible and telecom wavelengths with comparable performance. Isolation bandwidths up to ∼100 nm can be achieved simultaneously at both visible and telecom wavelengths, limited only by the modulation bandwidth. Our device’s dual-band isolation, high flexibility, and real-time tunability can enable novel non-reciprocal functionality on integrated photonic platforms.
more »
« less
- Award ID(s):
- 1907918
- PAR ID:
- 10405055
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 48
- Issue:
- 8
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 1978
- Size(s):
- Article No. 1978
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Optical isolators, reliably integrated on-chip, are crucial components for a wide range of optical systems and applications. We introduce a new class of wideband nonmagnetic and linear optical isolators based on nonlinear frequency conversion and spectral filtering among the pump, signal, and idler wavelengths. The scheme is experimentally demonstrated using difference-frequency generation in periodically poled thin-film lithium niobate integrated devices and short- and long-pass optical filters. We demonstrate a wide bandwidth of more than 150 nm, limited only by the measurement setup, and an optical isolation ratio of up to 18 dB for the involved idler and signal waves. The difference of transmittance at the signal wavelength between forward and backward propagation is 40 dB. We also discuss pathways for substantial isolation improvement using appropriate anti-reflection coatings. The integrable isolator, operating in the telecommunication band, is characterized by a perfectly linear output versus input power dependence and can be incorporated into high-speed telecom and datacom systems as well as a variety of other applications.more » « less
-
Abstract Solutions for scalable, high-performance optical control are important for the development of scaled atom-based quantum technologies. Modulation of many individual optical beams is central to applying arbitrary gate and control sequences on arrays of atoms or atom-like systems. At telecom wavelengths, miniaturization of optical components via photonic integration has pushed the scale and performance of classical and quantum optics far beyond the limitations of bulk devices. However, material platforms for high-speed telecom integrated photonics lack transparency at the short wavelengths required by leading atomic systems. Here, we propose and implement a scalable and reconfigurable photonic control architecture using integrated, visible-light modulators based on thin-film lithium niobate. We combine this system with techniques in free-space optics and holography to demonstrate multi-channel, gigahertz-rate visible beamshaping. When applied to silicon-vacancy artificial atoms, our system enables the spatial and spectral addressing of a dynamically-selectable set of these stochastically-positioned point emitters.more » « less
-
Abstract In this paper, we report, for the first time, a theoretical study on passive photonic devices including optical power splitters/combiners and grating couplers (GCs) operating at non-telecom wavelengths above 2 µ m in a monolithic GaSb platform. Passive components were designed to operate, in particular, at around 2.6 µ m for monolithic integration with active photonic devices on the III–V gallium antimonide material platform. The three popular types of splitters/combiners such as directional couplers, multimode interferometer-, and Y-branch-couplers were theoretically investigated. Based on our optimized design and rigorous analysis, fabrication-compatible 1 × 2 optical power splitters with less than 0.12 dB excess losses, large spectral bandwidth, and a 50:50 splitting ratio are achieved. For fiber-to-chip coupling, we also report the design of GCs with an outcoupling efficiency of ∼29% at 2.56 μ m and a 3 dB bandwidth of 80 nm. The results represent a significant step towards developing a complete functional photonic integrated circuits at mid-wave infrared wavelengths.more » « less
-
We explore the possibilities enabled by the spatiotemporal modulation of graphene’s conductivity to realize magnetic-free isolators at terahertz and infrared frequencies. To this purpose, graphene is loaded with periodically distributed gates that are time-modulated. First, we investigate plasmonic isolators based on various mechanisms such as symmetric bandgaps and interband photonic transitions and we demonstrate isolation levels over 30 dB using realistic biasing schemes. To lessen the dependence on high-quality graphene able to support surface plasmons with low damping, we then introduce a hybrid photonic platform based on spatiotemporally modulated graphene coupled to high-Q modes propagating on dielectric waveguides. We exploit transversal Fabry-Perot resonances appearing due to the finite-width of the waveguide to significantly boost graphene/waveguide interactions and to achieve isolation levels over 50 dB in compact structures modulated with low biasing voltages. The resulting platform is CMOS-compatible, exhibits an overall loss below 4 dB, and is robust against graphene imperfections. We also put forward a theoretical framework based on coupled-mode theory and on solving the eigenstates of the modulated structure that is in excellent agreement with full-wave numerical simulations, sheds light in the underlying physics that govern the proposed isolators, and speeds-up their analysis and design. We envision that the proposed technology will open new and efficient routes to realize integrated and silicon compatible isolators, with wide range of applications in communications and photonic networks.more » « less
An official website of the United States government
