skip to main content


Title: PinK: High-speed In-storage Key-value Store with Bounded Tails
Key-value store based on a log-structured merge-tree (LSMtree) is preferable to hash-based KV store because an LSMtree can support a wider variety of operations and show better performance, especially for writes. However, LSM-tree is difficult to implement in the resource constrained environment of a key-value SSD (KV-SSD) and consequently, KV-SSDs typically use hash-based schemes. We present PinK, a design and implementation of an LSM-tree-based KV-SSD, which compared to a hash-based KV-SSD, reduces 99th percentile tail latency by 73%, improves average read latency by 42% nd shows 37% higher throughput. The key idea in improving the performance of an LSM-tree in a resource constrained environment is to avoid the use of Bloom filters and instead, use a small amount of DRAM to keep/pin the top levels of the LSM-tree.  more » « less
Award ID(s):
1725303
NSF-PAR ID:
10206788
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
USENIX Annual Technical Conference (ATC '20), July 15-17, 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The emergence of Intel's Optane DC persistent memory (Optane Pmem) draws much interest in building persistent key-value (KV) stores to take advantage of its high throughput and low latency. A major challenge in the efforts stems from the fact that Optane Pmem is essentially a hybrid storage device with two distinct properties. On one hand, it is a high-speed byte-addressable device similar to DRAM. On the other hand, the write to the Optane media is conducted at the unit of 256 bytes, much like a block storage device. Existing KV store designs for persistent memory do not take into account of the latter property, leading to high write amplification and constraining both write and read throughput. In the meantime, a direct re-use of a KV store design intended for block devices, such as LSM-based ones, would cause much higher read latency due to the former property. In this paper, we propose ChameleonDB, a KV store design specifically for this important hybrid memory/storage device by considering and exploiting these two properties in one design. It uses LSM tree structure to efficiently admit writes with low write amplification. It uses an in-DRAM hash table to bypass LSM-tree's multiple levels for fast reads. In the meantime, ChameleonDB may choose to opportunistically maintain the LSM multi-level structure in the background to achieve short recovery time after a system crash. ChameleonDB's hybrid structure is designed to be able to absorb sudden bursts of a write workload, which helps avoid long-tail read latency. Our experiment results show that ChameleonDB improves write throughput by 3.3× and reduces read latency by around 60% compared with a legacy LSM-tree based KV store design. ChameleonDB provides performance competitive even with KV stores using fully in-DRAM index by using much less DRAM space. Compared with CCEH, a persistent hash table design, ChameleonDB provides 6.4× higher write throughput. 
    more » « less
  2. Key-value (KV) stores play an increasingly critical role in supporting diverse large-scale applications in modern data centers hosting terabytes of KV items which even might reside on a single server due to virtualization purpose. The combination of ever growing volume of KV items and storage/application consolidation is driving a trend of high storage density for KV stores. Shingled Magnetic Recording (SMR) represents a promising technology for increasing disk capacity, but it comes at a cost of poor random write performance and severe I/O amplification. Applications/software working with SMR devices need to be designed and optimized in an SMR-friendly manner. In this work, we present SEALDB, a Log-Structured Merge tree (LSM-tree) based key-value store that is specifically op- timized for and works well with SMR drives via adequately addressing the poor random writes and severe I/O amplification issues. First, for LSM-trees, SEALDB concatenates SSTables of each compaction, and groups them into sets. Taking sets as the basic unit for compactions, SEALDB improves compaction efficiency by mitigating random I/Os. Second, SEALDB creates varying size bands on HM-SMR drives, named dynamic bands. Dynamic bands not only accommodate the storage of sets, but also eliminate the auxiliary write amplification from SMR drives. We demonstrate the advantages of SEALDB via extensive experiments in various workloads. Overall, SEALDB delivers impressive performance improvement. Compared with LevelDB, SEALDB is 3.42× faster on random load due to improved compaction efficiency and eliminated auxiliary write amplification on SMR drives. 
    more » « less
  3. Computer systems utilizing byte-addressable Non-Volatile Memory ( NVM ) as memory/storage can provide low-latency data persistence. The widely used key-value stores using Log-Structured Merge Tree ( LSM-Tree ) are still beneficial for NVM systems in aspects of the space and write efficiency. However, the significant write amplification introduced by the leveled compaction of LSM-Tree degrades the write performance of the key-value store and shortens the lifetime of the NVM devices. The existing studies propose new compaction methods to reduce write amplification. Unfortunately, they result in a relatively large read amplification. In this article, we propose NVLSM, a key-value store for NVM systems using LSM-Tree with new accumulative compaction. By fully utilizing the byte-addressability of NVM, accumulative compaction uses pointers to accumulate data into multiple floors in a logically sorted run to reduce the number of compactions required. We have also proposed a cascading searching scheme for reads among the multiple floors to reduce read amplification. Therefore, NVLSM reduces write amplification with small increases in read amplification. We compare NVLSM with key-value stores using LSM-Tree with two other compaction methods: leveled compaction and fragmented compaction. Our evaluations show that NVLSM reduces write amplification by up to 67% compared with LSM-Tree using leveled compaction without significantly increasing the read amplification. In write-intensive workloads, NVLSM reduces the average latency by 15.73%–41.2% compared to other key-value stores. 
    more » « less
  4. null (Ed.)
    Data-intensive applications fueled the evolution of log structured merge (LSM) based key-value engines that employ the out-of-place paradigm to support high ingestion rates with low read/write interference. These benefits, however, come at the cost of treating deletes as a second-class citizen. A delete inserts a tombstone that invalidates older instances of the deleted key. State-of-the-art LSM engines do not provide guarantees as to how fast a tombstone will propagate to persist the deletion. Further, LSM engines only support deletion on the sort key. To delete on another attribute (e.g., timestamp), the entire tree is read and re-written. We highlight that fast persistent deletion without affecting read performance is key to support: (i) streaming systems operating on a window of data, (ii) privacy with latency guarantees on the right-to-be-forgotten, and (iii) en masse cloud deployment of data systems that makes storage a precious resource. To address these challenges, in this paper, we build a new key-value storage engine, Lethe, that uses a very small amount of additional metadata, a set of new delete-aware compaction policies, and a new physical data layout that weaves the sort and the delete key order. We show that Lethe supports any user-defined threshold for the delete persistence latency offering higher read throughput (1.17-1.4x) and lower space amplification (2.1-9.8x), with a modest increase in write amplification (between 4% and 25%). In addition, Lethe supports efficient range deletes on a secondary delete key by dropping entire data pages without sacrificing read performance nor employing a costly full tree merge. 
    more » « less
  5. Host-managed shingled magnetic recording drives (HMSMR) give a capacity advantage to harness the explosive growth of data. Applications where data is sequentially written and randomly read, such as key-value stores based on Log-Structured Merge Trees (LSM-trees), make the HMSMR an ideal solution due to its capacity, predictable performance, and economical cost. However, building an LSMtree based KV store on HM-SMR drives presents severe challenges in maintaining the performance and space efficiency due to the redundant cleaning processes for applications and storage devices (i.e., compaction and garbage collections). To eliminate the overhead of on-disk garbage collections (GC) and improve compaction efficiency, this paper presents GearDB, a GC-free KV store tailored for HMSMR drives. GearDB proposes three new techniques: a new on-disk data layout, compaction windows, and a novel gear compaction algorithm. We implement and evaluate GearDB with LevelDB on a real HM-SMR drive. Our extensive experiments have shown that GearDB achieves both good performance and space efficiency, i.e., on average 1:71 faster than LevelDB in random write with a space efficiency of 89.9%. 
    more » « less