Abstract Ring origami has emerged as a robust strategy for designing foldable and deployable structures due to its impressive packing abilities achieved from the snap-folding mechanism. In general, polygonal rings with rationally designed geometric parameters can fold into compacted three-loop configurations with curved segments, which result from the internal bending moment in the folded state. Inspired by the internal bending moment-induced curvature in the folded state, we explore how this curvature can be tuned by introducing initial natural curvature to the segments of the polygonal rings in their deployed stress-free state, and study how this initial curvature affects their folded configurations. Taking a clue from straight-segmented polygonal rings that fold into overlapping curved loops, we find it is possible to reverse the process by introducing curvature into the ring segments in the stress-free initial state such that the rings fold into a straight-line looped pattern with “zero” area. This realizes extreme packing. In this work, by a combination of experimental observation, finite element analysis, and theoretical modeling, we systematically study the effect of segment curvature on folding behavior, folded configurations, and packing of curved ring origami with different geometries. It is anticipated that curved ring origami can open a new avenue for the design of foldable and deployable structures with simple folded configurations and high packing efficiency.
more »
« less
Protamine loops DNA in multiple steps
Abstract Protamine proteins dramatically condense DNA in sperm to almost crystalline packing levels. Here, we measure the first step in the in vitro pathway, the folding of DNA into a single loop. Current models for DNA loop formation are one-step, all-or-nothing models with a looped state and an unlooped state. However, when we use a Tethered Particle Motion (TPM) assay to measure the dynamic, real-time looping of DNA by protamine, we observe the presence of multiple folded states that are long-lived (∼100 s) and reversible. In addition, we measure folding on DNA molecules that are too short to form loops. This suggests that protamine is using a multi-step process to loop the DNA rather than a one-step process. To visualize the DNA structures, we used an Atomic Force Microscopy (AFM) assay. We see that some folded DNA molecules are loops with a ∼10-nm radius and some of the folded molecules are partial loops—c-shapes or s-shapes—that have a radius of curvature of ∼10 nm. Further analysis of these structures suggest that protamine is bending the DNA to achieve this curvature rather than increasing the flexibility of the DNA. We therefore conclude that protamine loops DNA in multiple steps, bending it into a loop.
more »
« less
- Award ID(s):
- 1653501
- PAR ID:
- 10206835
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 48
- Issue:
- 11
- ISSN:
- 0305-1048
- Page Range / eLocation ID:
- 6108 to 6119
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract DNA in cells is organized in negatively supercoiled loops. The resulting torsional and bending strain allows DNA to adopt a surprisingly wide variety of 3-D shapes. This interplay between negative supercoiling, looping, and shape influences how DNA is stored, replicated, transcribed, repaired, and likely every other aspect of DNA activity. To understand the consequences of negative supercoiling and curvature on the hydrodynamic properties of DNA, we submitted 336 bp and 672 bp DNA minicircles to analytical ultracentrifugation (AUC). We found that the diffusion coefficient, sedimentation coefficient, and the DNA hydrodynamic radius strongly depended on circularity, loop length, and degree of negative supercoiling. Because AUC cannot ascertain shape beyond degree of non-globularity, we applied linear elasticity theory to predict DNA shapes, and combined these with hydrodynamic calculations to interpret the AUC data, with reasonable agreement between theory and experiment. These complementary approaches, together with earlier electron cryotomography data, provide a framework for understanding and predicting the effects of supercoiling on the shape and hydrodynamic properties of DNA.more » « less
-
Chen, Shi-Jie (Ed.)R-loops are a class of non-canonical nucleic acid structures that typically form during transcription when the nascent RNA hybridizes the DNA template strand, leaving the non-template DNA strand unpaired. These structures are abundant in nature and play important physiological and pathological roles. Recent research shows that DNA sequence and topology affect R-loops, yet it remains unclear how these and other factors contribute to R-loop formation. In this work, we investigate the link between nascent RNA folding and the formation of R-loops. We introduce tree-polynomials, a new class of representations of RNA secondary structures. A tree-polynomial representation consists of a rooted tree associated with an RNA secondary structure together with a polynomial that is uniquely identified with the rooted tree. Tree-polynomials enable accurate, interpretable and efficient data analysis of RNA secondary structures without pseudoknots. We develop a computational pipeline for investigating and predicting R-loop formation from a genomic sequence. The pipeline obtains nascent RNA secondary structures from a co-transcriptional RNA folding software, and computes the tree-polynomial representations of the structures. By applying this pipeline to plasmid sequences that contain R-loop forming genes, we establish a strong correlation between the coefficient sums of tree-polynomials and the experimental probability of R-loop formation. Such strong correlation indicates that the pipeline can be used for accurate R-loop prediction. Furthermore, the interpretability of tree-polynomials allows us to characterize the features of RNA secondary structure associated with R-loop formation. In particular, we identify that branches with short stems separated by bulges and interior loops are associated with R-loops.more » « less
-
Abstract Polycomb repressive complex 2 (PRC2) is a histone methyltransferase that methylates histone H3 at Lysine 27. PRC2 is critical for epigenetic gene silencing, cellular differentiation and the formation of facultative heterochromatin. It can also promote or inhibit oncogenesis. Despite this importance, the molecular mechanisms by which PRC2 compacts chromatin are relatively understudied. Here, we visualized the binding of PRC2 to naked DNA in liquid at the single-molecule level using atomic force microscopy. Analysis of the resulting images showed PRC2, consisting of five subunits (EZH2, EED, SUZ12, AEBP2 and RBBP4), bound to a 2.5-kb DNA with an apparent dissociation constant ($$K_{\rm{D}}^{{\rm{app}}}$$) of 150 ± 12 nM. PRC2 did not show sequence-specific binding to a region of high GC content (76%) derived from a CpG island embedded in such a long DNA substrate. At higher concentrations, PRC2 compacted DNA by forming DNA loops typically anchored by two or more PRC2 molecules. Additionally, PRC2 binding led to a 3-fold increase in the local bending of DNA’s helical backbone without evidence of DNA wrapping around the protein. We suggest that the bending and looping of DNA by PRC2, independent of PRC2’s methylation activity, may contribute to heterochromatin formation and therefore epigenetic gene silencing.more » « less
-
Complex DNA topological structures, including polymer loops, are frequently observed in biological processes when protein molecules simultaneously bind to several distant sites on DNA. However, the molecular mechanisms of formation of these systems remain not well understood. Existing theoretical studies focus only on specific interactions between protein and DNA molecules at target sequences. However, the electrostatic origin of primary protein–DNA interactions suggests that interactions of proteins with all DNA segments should be considered. Here we theoretically investigate the role of non-specific interactions between protein and DNA molecules on the dynamics of loop formation. Our approach is based on analyzing a discrete-state stochastic model via a method of first-passage probabilities supplemented by Monte Carlo computer simulations. It is found that depending on a protein sliding length during the non-specific binding event three different dynamic regimes of the DNA loop formation might be observed. In addition, the loop formation time might be optimized by varying the protein sliding length, the size of the DNA molecule, and the position of the specific target sequences on DNA. Our results demonstrate the importance of non-specific protein–DNA interactions in the dynamics of DNA loop formations.more » « less
An official website of the United States government

