skip to main content

Title: Quantitative 3D refractive index tomography of opaque samples in epi-mode

Three-dimensional (3D) refractive index (RI) tomography has recently become an exciting new tool for biological studies. However, its limitation to (1) thin samples resulting from a need of transmissive illumination and (2) small fields of view (typically∼<#comment/>50µ<#comment/>m×<#comment/>50µ<#comment/>m) has hindered its utility in broader biomedical applications. In this work, we demonstrate 3D RI tomography with a large field of view in opaque, arbitrarily thick scattering samples (unsuitable for imaging with conventional transmissive tomographic techniques) with a penetration depth of ca. one mean free scattering path length (∼<#comment/>100µ<#comment/>min tissue) using a simple, low-cost microscope system with epi-illumination. This approach leverages a solution to the inverse scattering problem via the general non-paraxial 3D optical transfer function of our quantitative oblique back-illumination microscopy (qOBM) optical system. A theoretical analysis is presented along with simulations and experimental validations using polystyrene beads, and rat and human thick brain tissues. This work has significant implications for the investigation of optically thick, semi-infinite samples in a non-invasive and label-free manner. This unique 3D qOBM approach can extend the utility of 3D RI tomography for translational and clinical medicine.

more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Page Range / eLocation ID:
Article No. 6
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ambition of this review is to provide an up-to-date synopsis of the state of 3D printing technology for optical and photonic components, to gauge technological advances, and to discuss future opportunities. While a range of approaches have been developed and some have been commercialized, no single approach can yet simultaneously achieve small detail and low roughness at large print volumes and speed using multiple materials. Instead, each approach occupies a niche where the components/structures that can be created fit within a relatively narrow range of geometries with limited material choices. For instance, the common Fused Deposition Modeling (FDM) approach is capable of large print volumes at relatively high speeds but lacks the resolution needed for small detail (><#comment/>100µ<#comment/>m) with low roughness (><#comment/>9µ<#comment/>m). At the other end of the spectrum, two-photon polymerization can achieve roughness (<<#comment/>15nm) and detail (<<#comment/>140nm) comparable to commercial molded and polished optics. However, the practical achievable print volume and speed are orders of magnitude smaller and slower than the FDM approach. Herein, we discuss the current state-of-the-art 3D printing approaches, noting the capability of each approach and prognosticate on future innovations that could close the gaps in performance.

    more » « less
  2. The mid-IR spectroscopic properties ofEr3+doped low-phononCsCdCl3andCsPbCl3crystals grown by the Bridgman technique have been investigated. Using optical excitations at∼<#comment/>800nmand∼<#comment/>660nm, both crystals exhibited IR emissions at∼<#comment/>1.55,∼<#comment/>2.75,∼<#comment/>3.5, and∼<#comment/>4.5µ<#comment/>mat room temperature. The mid-IR emission at 4.5 µm, originating from the4I9/2→<#comment/>4I11/2transition, showed a long emission lifetime of∼<#comment/>11.6msforEr3+dopedCsCdCl3, whereasEr3+dopedCsPbCl3exhibited a shorter lifetime of∼<#comment/>1.8ms. The measured emission lifetimes of the4I9/2state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the4I9/2→<#comment/>4I11/2transition inEr3+dopedCsCdCl3andCsPbCl3were determined to be∼<#comment/>0.14×<#comment/>10−<#comment/>20cm2and∼<#comment/>0.41×<#comment/>10−<#comment/>20cm2, respectively. The results of Judd–Ofelt analysis are presented and discussed.

    more » « less
  3. Cross-platform observing systems are requisite to capturing the temporal and spatial dynamics of particles in the ocean. We present simultaneous observations of bulk optical properties, including the particulate beam attenuation (cp) and backscattering (bbp) coefficients, and particle size distributions collected in the North Pacific Subtropical Gyre. Clear and coherent diel cycles are observed in all bulk and size-fractionated optical proxies for particle biomass. We show evidence linking diurnal increases incpandbbpto daytime particle growth and division of cells, with particles<<#comment/>7µ<#comment/>mdriving the daily cycle of particle production and loss within the mixed layer. Flow cytometry data reveal the nitrogen-fixing cyanobacteriumCrocosphaera(∼<#comment/>4−<#comment/>7µ<#comment/>m) to be an important driver ofcpat the time of sampling, whereasProchlorococcusdynamics (∼<#comment/>0.5µ<#comment/>m) were essential to reproducing temporal variability inbbp. This study is a step towards improved characterization of the particle size range represented byin situbulk optical properties and a better understanding of the mechanisms that drive variability in particle production in the oligotrophic open ocean.

    more » « less
  4. In this Letter, we present a high extinction ratio and compact on-chip polarization beam splitter (PBS), based on an extreme skin-depth (eskid) waveguide. Subwavelength-scale gratings form an effectively anisotropic metamaterial cladding and introduce a large birefringence. The anisotropic dielectric perturbation of the metamaterial cladding suppresses the TE polarization extinction via exceptional coupling, while the large birefringence efficiently cross-couples the TM mode, thus reducing the coupling length. We demonstrated the eskid-PBS on a silicon-on-insulator platform and achieved an ultra-high extinction ratio PBS (≈<#comment/>60dBfor TE and≈<#comment/>48dBfor TM) with a compact coupling length (≈<#comment/>14.5µ<#comment/>m). The insertion loss is also negligible (<<#comment/>0.6dB). The bandwidth is><#comment/>80(30) nm for the TE (TM) extinction ratio><#comment/>20dB. Our ultra-high extinction ratio PBS is crucial in implementing efficient polarization diversity circuits, especially where a high degree of polarization distinguishability is necessary, such as photonic quantum information processing.

    more » « less
  5. We design and characterize a novel axilens-based diffractive optics platform that flexibly combines efficient point focusing and grating selectivity and is compatible with scalable top-down fabrication based on a four-level phase mask configuration. This is achieved using phase-modulated compact axilens devices that simultaneously focus incident radiation of selected wavelengths at predefined locations with larger focal depths compared with traditional Fresnel lenses. In addition, the proposed devices are polarization-insensitive and maintain a large focusing efficiency over a broad spectral band. Specifically, here we discuss and characterize modulated axilens configurations designed for long-wavelength infrared (LWIR) in the 6 µm–12 µm wavelength range and in the 4 µm–6 µm midwavelength infrared (MWIR) range. These devices are ideally suited for monolithic integration atop the substrate layers of infrared focal plane arrays and for use as compact microspectrometers. We systematically study their focusing efficiency, spectral response, and cross-talk ratio; further, we demonstrate linear control of multiwavelength focusing on a single plane. Our design method leverages Rayleigh–Sommerfeld diffraction theory and is validated numerically using the finite element method. Finally, we demonstrate the application of spatially modulated axilenses to the realization of a compact, single-lens spectrometer. By optimizing our devices, we achieve a minimum distinguishable wavelength interval ofΔ<#comment/>λ<#comment/>=240nmatλ<#comment/>c=8µ<#comment/>mandΔ<#comment/>λ<#comment/>=165nmatλ<#comment/>c=5µ<#comment/>m. The proposed devices add fundamental spectroscopic capabilities to compact imaging devices for a number of applications ranging from spectral sorting to LWIR and MWIR phase contrast imaging and detection.

    more » « less