skip to main content


Title: Efficient and compact thermo-optic phase shifter in silicon-rich silicon nitride

The design, fabrication, and characterization of low-loss ultra-compact bends in high-index (n=3.1atλ<#comment/>=1550nm) plasma-enhanced chemical vapor deposition silicon-rich silicon nitride (SRN) were demonstrated and utilized to realize efficient, small footprint thermo-optic phase shifter. Compact bends were structured into a folded waveguide geometry to form a rectangular spiral within an area of65×<#comment/>65µ<#comment/>m2, having a total active waveguide length of 1.2 mm. The device featured a phase-shifting efficiency of8mW/π<#comment/>and a 3 dB switching bandwidth of 15 KHz. We propose SRN as a promising thermo-optic platform that combines the properties of silicon and stoichiometric silicon nitride.

 
more » « less
Award ID(s):
2023730
NSF-PAR ID:
10304727
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
46
Issue:
18
ISSN:
0146-9592; OPLEDP
Page Range / eLocation ID:
Article No. 4646
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this Letter, we present a high extinction ratio and compact on-chip polarization beam splitter (PBS), based on an extreme skin-depth (eskid) waveguide. Subwavelength-scale gratings form an effectively anisotropic metamaterial cladding and introduce a large birefringence. The anisotropic dielectric perturbation of the metamaterial cladding suppresses the TE polarization extinction via exceptional coupling, while the large birefringence efficiently cross-couples the TM mode, thus reducing the coupling length. We demonstrated the eskid-PBS on a silicon-on-insulator platform and achieved an ultra-high extinction ratio PBS (≈<#comment/>60dBfor TE and≈<#comment/>48dBfor TM) with a compact coupling length (≈<#comment/>14.5µ<#comment/>m). The insertion loss is also negligible (<<#comment/>0.6dB). The bandwidth is><#comment/>80(30) nm for the TE (TM) extinction ratio><#comment/>20dB. Our ultra-high extinction ratio PBS is crucial in implementing efficient polarization diversity circuits, especially where a high degree of polarization distinguishability is necessary, such as photonic quantum information processing.

     
    more » « less
  2. We experimentally demonstrate simultaneous turbulence mitigation and channel demultiplexing in a 200 Gbit/s orbital-angular-momentum (OAM) multiplexed link by adaptive wavefront shaping and diffusing (WSD) the light beams. Different realizations of two emulated turbulence strengths (the Fried parameterr0=0.4,1.0mm) are mitigated. The experimental results show the following. (1) Crosstalk between OAMl=+1andl=−<#comment/>1modes can be reduced by><#comment/>10.0and><#comment/>5.8dB, respectively, under the weaker turbulence (r0=1.0mm); crosstalk is further improved by><#comment/>17.7and><#comment/>19.4dB, respectively, under most realizations in the stronger turbulence (r0=0.4mm). (2) The optical signal-to-noise ratio penalties for the bit error rate performance are measured to be∼<#comment/>0.7and∼<#comment/>1.6dBunder weaker turbulence, while measured to be∼<#comment/>3.2and∼<#comment/>1.8dBunder stronger turbulence for OAMl=+1andl=−<#comment/>1mode, respectively.

     
    more » « less
  3. We experimentally demonstrate a camera whose primary optic is a cannula/needle (diameter=0.22mmandlength=12.5mm) that acts as a light pipe transporting light intensity from an object plane (35 cm away) to its opposite end. Deep neural networks (DNNs) are used to reconstruct color and grayscale images with a field of view of 18° and angular resolution of∼<#comment/>0.4∘<#comment/>. We showed a large effective demagnification of127×<#comment/>. Most interestingly, we showed that such a camera could achieve close to diffraction-limited performance with an effective numerical aperture of 0.045, depth of focus∼<#comment/>16µ<#comment/>m, and resolution close to the sensor pixel size (3.2 µm). When trained on images with depth information, the DNN can create depth maps. Finally, we show DNN-based classification of the EMNIST dataset before and after image reconstructions. The former could be useful for imaging with enhanced privacy.

     
    more » « less
  4. The mid-IR spectroscopic properties ofEr3+doped low-phononCsCdCl3andCsPbCl3crystals grown by the Bridgman technique have been investigated. Using optical excitations at∼<#comment/>800nmand∼<#comment/>660nm, both crystals exhibited IR emissions at∼<#comment/>1.55,∼<#comment/>2.75,∼<#comment/>3.5, and∼<#comment/>4.5µ<#comment/>mat room temperature. The mid-IR emission at 4.5 µm, originating from the4I9/2→<#comment/>4I11/2transition, showed a long emission lifetime of∼<#comment/>11.6msforEr3+dopedCsCdCl3, whereasEr3+dopedCsPbCl3exhibited a shorter lifetime of∼<#comment/>1.8ms. The measured emission lifetimes of the4I9/2state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the4I9/2→<#comment/>4I11/2transition inEr3+dopedCsCdCl3andCsPbCl3were determined to be∼<#comment/>0.14×<#comment/>10−<#comment/>20cm2and∼<#comment/>0.41×<#comment/>10−<#comment/>20cm2, respectively. The results of Judd–Ofelt analysis are presented and discussed.

     
    more » « less
  5. We designed, fabricated, and characterized a flat multi-level diffractive lens comprised of only silicon withdiameter=15.2mm, focallength=19mm, numerical aperture of 0.371, and operating over the long-wave infrared (LWIR)spectrum=8µ<#comment/>mto 14 µm. We experimentally demonstrated a field of view of 46°, depth of focus><#comment/>5mm, and wavelength-averaged Strehl ratio of 0.46. All of these metrics were comparable to those of a conventional refractive lens. The active device thickness is only 8 µm, and its weight (including the silicon substrate) is less than 0.2 g.

     
    more » « less