skip to main content

Title: Unveiling the Apparent “Negative Capacitance” Effects Resulting from Pulse Measurements of Ferroelectric-Dielectric Bilayer Capacitors
Apparent ‘Negative Capacitance’ (NC) effects have been observed in some ferroelectric-dielectric (FE-DE) bilayers by pulse measurements, and the associated results have been published that claim to be direct evidence to support the quasi-static ‘negative capacitance’ (QSNC) idea. However, the ‘NC’ effects only occur when sufficiently high voltage is applied, and even exist in stand-alone FE capacitors. These results contradict the QSNC theory, as it predicts that once stabilized (requires a DE layer), the FE remains in the ‘NC’ state regardless of the applied voltage. In this letter, by the use of Nucleation-Limited-Switching (NLS) model, we present our results obtained from simulation of pulse measurements on samples that are similar to the published ones. The simulation results indicate that reverse polarization switching occurs upon the falling edge of the pulses, which leads to the apparent hysteresis-free NC effect. This work provides an alternative interpretation of the experimental results without invoking the QSNC theory.
; ; ;
Naeemi, A.J.
Award ID(s):
Publication Date:
Journal Name:
IEEE electron device letters
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Microstructured neutron detectors have the benefit of enhanced neutron detection efficiency as compared to planar devices, achieved by etching6LiF-filled trenches on the top surface of a silicon PIN diode. This sensor geometry results in a complex electric field distribution and depletion characteristics within the diode under reverse bias. For the first time on record, the effects of a fixed oxide charge on the microstructured device depletion characteristics and mobile carrier transport is investigated. Prototype detectors were fabricated with non-conformal surface doping. Capacitance voltage and current voltage measurements were performed for these prototypes and compared with COMSOL Multiphysics simulations. A spectral response from an241Am alpha particle source was acquired and analyzed. It was found that monoenergetic alpha particles produce three prominent peaks in the pulse height spectrum output by the device. The peaks were confirmed by simulations to correlate with dead layers and incident trajectories into the microstructure. It was also found that significant differences in pulse rise time result, corresponding with events arriving in a low-field region in the fins and a high-field region in the bulk. Geant4 was utilized for radiation transport, interaction modeling, and benchmarking the spectral data. The results of this simulation work provide confidence in themore »ability to attain and benchmark electrical characteristics and spectral data for semiconductor radiation detectors employing complex microstructures.

    « less
  2. Abstract

    The device concept of ferroelectric-based negative capacitance (NC) transistors offers a promising route for achieving energy-efficient logic applications that can outperform the conventional semiconductor technology, while viable operation mechanisms remain a central topic of debate. In this work, we report steep slope switching in MoS2transistors back-gated by single-layer polycrystalline PbZr0.35Ti0.65O3. The devices exhibit current switching ratios up to 8 × 106within an ultra-low gate voltage window of$$V_{{{\mathrm{g}}}} = \pm \! 0.5$$Vg=±0.5V and subthreshold swing (SS) as low as 9.7 mV decade−1at room temperature, transcending the 60 mV decade−1Boltzmann limit without involving additional dielectric layers. Theoretical modeling reveals the dominant role of the metastable polar states within domain walls in enabling the NC mode, which is corroborated by the relation between SS and domain wall density. Our findings shed light on a hysteresis-free mechanism for NC operation, providing a simple yet effective material strategy for developing low-power 2D nanoelectronics.

  3. We present a physics-based model for ferroelectric/negative capacitance transistors (FEFETs/ NCFETs) without an inter-layer metal between ferroelectric and dielectric in the gate stack. The model self-consistently solves 2D Poisson's equation, non-equilibrium Green's function (NEGF) based charge and transport equations, and multi-domain Landau Khalatnikov (LK) equations with the domain interaction term. The proposed simulation framework captures the variation of ferroelectric (FE) polarization (P) along the gate length due to non-uniform electric field (E) along the channel. To calibrate the LK equations, we fabricate and characterize 10nm HZO films. Based on the calibrated model, we analyze the gate/drain voltage dependence of P distribution in the FE and its effect on the channel potential and current-voltage characteristics. Our results highlight the importance of larger domain interaction to boost the benefits of FEFETs with subthreshold swing (SS) as small as ~50mV/decade achieved at room temperature. As domain interaction increases, the characteristics of FEFETs without inter-layer metal (SS, negative drain induced barrier lowering (DIBL), negative output conductance) approach those of FEFETs with inter-layer metal.
  4. This paper presents a 100kW one-cell switched-tank converter (STC) for electric vehicle (EV) application. A new evaluation method that evaluates different converter topologies has been proposed in this paper to show the advantages of the STC over the boost converter and 3-level flying capacitor multilevel (FCML) converter. Both non-interleaved (1-phase) and interleaved (2-phase and 3-phase) operation of the STC have been analyzed. The analytical study shows that it is difficult to achieve the optimum design of the passive components such as input and output capacitors in 1-phase converter because of the high RMS current flowing through them. This means the passive components need to be over-designed in order to meet the current stress requirement. For instance, the designed capacitance of input capacitor is several times of the required value, which leads to bulky capacitor size. Therefore, this paper evaluates the potentials of using 2-phase and 3-phase interleaved operation to address this issue. Two operation modes, zero-voltage switching (ZVS) mode and zero-current switching (ZCS) mode, are evaluated to show the ZCS operation mode is more suitable for the presented converter with interleaved operation. By using the interleaving concept, the predicted 100kW 3-phase interleaved converter can achieve 60% size reduction based onmore »the 1-phase converter design. And the predicted power density of the 3-phase interleaved STC can achieve 115kW/L power density. Simulation results are provided to validate the theoretical analysis. Both 1-phase and 3-phase 100kW prototypes under developing are shown in this paper.« less
  5. Multilevel modular resonant switched-capacitor converter can achieve either zero-current switching (ZCS) or zero-voltage switching (ZVS) by utilizing different converter control strategies. This paper presents a comprehensive way to compare the root mean square (RMS) value of current flowing through switching devices in both ZCS operation and ZVS operation. The study shows that with appropriate converter parameter design, the ZVS operation allows the RMS value of switch current at most 10% lower than that in ZCS operation. Therefore, the converter operating at ZVS mode has the potential to achieve higher efficiency comparing to the converter that operates at ZCS mode due to less semiconductor conduction loss. Furthermore, the ZVS operation can reduce the power loss due to MOSFET output capacitance. A 6x converter with 54V input voltage, 9V output voltage and 600W power rating is used as an example to show the detailed design procedure. Simulation results are provided to verify the theoretical analysis. Also, a 600W lab prototype that has 6 to 1 voltage conversion ratio has been built to verify the theoretical analysis.