skip to main content

Title: Ferroelectric transistor model based on self-consistent solution of 2D Poisson's, non-equilibrium Green's function and multi-domain Landau Khalatnikov equations
We present a physics-based model for ferroelectric/negative capacitance transistors (FEFETs/ NCFETs) without an inter-layer metal between ferroelectric and dielectric in the gate stack. The model self-consistently solves 2D Poisson's equation, non-equilibrium Green's function (NEGF) based charge and transport equations, and multi-domain Landau Khalatnikov (LK) equations with the domain interaction term. The proposed simulation framework captures the variation of ferroelectric (FE) polarization (P) along the gate length due to non-uniform electric field (E) along the channel. To calibrate the LK equations, we fabricate and characterize 10nm HZO films. Based on the calibrated model, we analyze the gate/drain voltage dependence of P distribution in the FE and its effect on the channel potential and current-voltage characteristics. Our results highlight the importance of larger domain interaction to boost the benefits of FEFETs with subthreshold swing (SS) as small as ~50mV/decade achieved at room temperature. As domain interaction increases, the characteristics of FEFETs without inter-layer metal (SS, negative drain induced barrier lowering (DIBL), negative output conductance) approach those of FEFETs with inter-layer metal.
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
International Electron Device Meetings
Page Range or eLocation-ID:
13.5.1 to 13.5.4
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The device concept of ferroelectric-based negative capacitance (NC) transistors offers a promising route for achieving energy-efficient logic applications that can outperform the conventional semiconductor technology, while viable operation mechanisms remain a central topic of debate. In this work, we report steep slope switching in MoS2transistors back-gated by single-layer polycrystalline PbZr0.35Ti0.65O3. The devices exhibit current switching ratios up to 8 × 106within an ultra-low gate voltage window of$$V_{{{\mathrm{g}}}} = \pm \! 0.5$$Vg=±0.5V and subthreshold swing (SS) as low as 9.7 mV decade−1at room temperature, transcending the 60 mV decade−1Boltzmann limit without involving additional dielectric layers. Theoretical modeling reveals the dominant role of the metastable polar states within domain walls in enabling the NC mode, which is corroborated by the relation between SS and domain wall density. Our findings shed light on a hysteresis-free mechanism for NC operation, providing a simple yet effective material strategy for developing low-power 2D nanoelectronics.

  2. Abstract

    The minimization of the subthreshold swing (SS) in transistors is essential for low‐voltage operation and lower power consumption, both critical for mobile devices and internet of things (IoT) devices. The conventional metal‐oxide‐semiconductor field‐effect transistor requires sophisticated dielectric engineering to achieve nearly ideal SS (60 mV dec−1at room temperature). However, another type of transistor, the junction field‐effect transistor (JFET) is free of dielectric layer and can reach the theoretical SS limit without complicated dielectric engineering. The construction of a 2D SnSe/MoS2van der Waals (vdW) heterostructure‐based JFET with nearly ideal SS is reported. It is shown that the SnSe/MoS2vdW heterostructure exhibits excellent p–n diode rectifying characteristics with low saturate current. Using the SnSe as the gate and MoS2as the channel, the SnSe/MoS2vdW heterostructure exhibit well‐behavioured n‐channel JFET characteristics with a small pinch‐off voltageVPof −0.25 V, nearly ideal subthreshold swing SS of 60.3 mV dec−1and high ON/OFF ratio over 106, demonstrating excellent electronic performance especially in the subthreshold regime.

  3. The ultra-wide bandgap of Al-rich AlGaN is expected to support a significantly larger breakdown field compared to GaN, but the reported performance thus far has been limited by the use of foreign substrates. In this Letter, the material and electrical properties of Al 0.85 Ga 0.15 N/Al 0.6 Ga 0.4 N high electron mobility transistors (HEMT) grown on a 2-in. single crystal AlN substrate are investigated, and it is demonstrated that native AlN substrates unlock the potential for Al-rich AlGaN to sustain large fields in such devices. We further study how Ohmic contacts made directly to a Si-doped channel layer reduce the knee voltage and increase the output current density. High-quality AlGaN growth is confirmed via scanning transmission electron microscopy, which also reveals the absence of metal penetration at the Ohmic contact interface and is in contrast to established GaN HEMT technology. Two-terminal mesa breakdown characteristics with 1.3  μm separation possess a record-high breakdown field strength of ∼11.5 MV/cm for an undoped Al 0.6 Ga 0.4 N-channel layer. The breakdown voltages for three-terminal devices measured with gate-drain distances of 4 and 9  μm are 850 and 1500 V, respectively.
  4. Abstract

    Ferroelectric (FE) devices are conventionally switched by an application of an electric field. However, the recent discoveries of light–matter interactions in heterostructures based on 2D semiconductors and FE materials open new opportunities for using light as an additional tool for device programming. Recently, a purely optical switching of FE polarization in heterostructures comprising 2D MoS2and FE oxide perovskites, such as BaTiO3and Pb(Zr,Ti)O3(PZT), was demonstrated. In this work, it is investigated whether this optical switching has a practical value and can be used to improve functional characteristics of MoS2‐PZT FE field‐effect transistors for nonvolatile memory applications. It is demonstrated that the combined use of an electrical field and visible light improves the nonvolatile ON/OFF ratios in MoS2‐PZT memories by several orders of magnitude compared to their purely electrical operation. The memories are read at zero gate voltage (VG) in darkness, but their ON and OFF currents, which routinely varied for different devices by over 105, are achieved by programming at the sameVG = −6 V with (ON state) and without (OFF state) light illumination, demonstrating its crucial importance. The light can likely serve as an important tool for better programming of a large variety of other semiconductor‐FE devices.

  5. Narrow-channel accumulated body nMOSFET devices with p-type side gates surrounding the active area have been electrically characterized between 100 and 400 K with varied side-gate biasing ( Vside ). The subthreshold slope (SS) and drain induced barrier lowering (DIBL) decrease and threshold voltage ( Vt ) increases linearly with reduced temperature and reduced side-gate bias. Detailed analysis on a 27 nm × 78 nm (width × length) device shows SS decreasing from 115 mV/dec at 400 K to 90 mV/dec at 300 K and down to 36 mV/dec at 100 K, DIBL decreasing by approximately 10 mV/V for each 100 K reduction in operating temperature, and Vt increasing from 0.42 to 0.61 V as the temperature is reduced from 400 to 100 K. Vt can be adjusted from ∼ 0.3 to ∼ 1.1 V with ∼ 0.3 V/V sensitivity by depletion or accumulation of the body of the device using Vside . This high level of tunability allows electronic control of Vt and drive current for variable temperature operation in a wide temperature range with extremely low leakage currents ( < 10 −13 A).