skip to main content

Title: Optimal Operation of Multilevel Modular Resonant Switched-Capacitor Converter
Multilevel modular resonant switched-capacitor converter can achieve either zero-current switching (ZCS) or zero-voltage switching (ZVS) by utilizing different converter control strategies. This paper presents a comprehensive way to compare the root mean square (RMS) value of current flowing through switching devices in both ZCS operation and ZVS operation. The study shows that with appropriate converter parameter design, the ZVS operation allows the RMS value of switch current at most 10% lower than that in ZCS operation. Therefore, the converter operating at ZVS mode has the potential to achieve higher efficiency comparing to the converter that operates at ZCS mode due to less semiconductor conduction loss. Furthermore, the ZVS operation can reduce the power loss due to MOSFET output capacitance. A 6x converter with 54V input voltage, 9V output voltage and 600W power rating is used as an example to show the detailed design procedure. Simulation results are provided to verify the theoretical analysis. Also, a 600W lab prototype that has 6 to 1 voltage conversion ratio has been built to verify the theoretical analysis.
Authors:
; ;
Award ID(s):
1810428
Publication Date:
NSF-PAR ID:
10109871
Journal Name:
2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)
Page Range or eLocation-ID:
218 to 224
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a 100kW one-cell switched-tank converter (STC) for electric vehicle (EV) application. A new evaluation method that evaluates different converter topologies has been proposed in this paper to show the advantages of the STC over the boost converter and 3-level flying capacitor multilevel (FCML) converter. Both non-interleaved (1-phase) and interleaved (2-phase and 3-phase) operation of the STC have been analyzed. The analytical study shows that it is difficult to achieve the optimum design of the passive components such as input and output capacitors in 1-phase converter because of the high RMS current flowing through them. This means the passive components need to be over-designed in order to meet the current stress requirement. For instance, the designed capacitance of input capacitor is several times of the required value, which leads to bulky capacitor size. Therefore, this paper evaluates the potentials of using 2-phase and 3-phase interleaved operation to address this issue. Two operation modes, zero-voltage switching (ZVS) mode and zero-current switching (ZCS) mode, are evaluated to show the ZCS operation mode is more suitable for the presented converter with interleaved operation. By using the interleaving concept, the predicted 100kW 3-phase interleaved converter can achieve 60% size reduction based onmore »the 1-phase converter design. And the predicted power density of the 3-phase interleaved STC can achieve 115kW/L power density. Simulation results are provided to validate the theoretical analysis. Both 1-phase and 3-phase 100kW prototypes under developing are shown in this paper.« less
  2. In this paper, a high efficiency, decoupled on-board battery charger is proposed. The proposed topology is composed of two LLC resonant converters sharing the same full-bridge inverter with constant switching frequency. The outputs of two LLC resonant converters are connected in series. One of the LLC resonant converters is operated at the resonant frequency, which is the highest efficiency operation point. The magnetic control is adopted for the second LLC resonant converter to fulfill the closed-loop control of charge voltage and current for constant voltage (CV) and constant current (CC) charge modes. The proposed topology can achieve zero voltage switching (ZVS) for all primary switches and zero current switching (ZCS) for all secondary diodes during both CC and CV modes. Furthermore, thanks to constant frequency operation, the electromagnetic interference (EMI) filter design is simplified. Simulation and experimental studies are presented to verify the feasibility and validity of the proposed topology.
  3. The focus of this study is on the design of a full-bridge unidirectional resonant LLC Solid State Transformer. The proposed topology uses a high-frequency transformer to optimize the size and weight of the converter. This converter has the capability of operating at fluctuating load conditions while it keeps the voltage regulated in different operation point. The converter is designed to maintain soft switching by using a resonant circuit in this design to minimize the switching loss of the high frequency converter. ZVS in the leading leg for turn on mode and ZCS commutation in the lagging leg for all of the modes are achieved in the H-bridge through the suggested circuitry which is analyzed mathematically in detail in this study. A combination of Pulse frequency modulation (PFM) and Phase Shifting Modulation (PSM) are utilized to control this resonant converter. The experimental setup for the suggested configuration was implemented and the results of the simulation and calculations have been verified with test results. The hardware set up was tested with two different power levels and the output results confirm that the control method works properly to feed the load and keeps the converter working in the expected frequency range and maintainingmore »the soft switching to decrease switching loss. The results shows conversion efficiency of 97.18% is achieved.« less
  4. In this paper, an new converter that includes isolated composite resonant multilevel converter (ICRMC) that uses composite converter concept and partial power voltage regulator (PPVR) has been proposed for telecommunication application. The proposed converter can achieve high efficiency at nominal operating point since it takes minimum effort to regulate the output voltage at this point. A comparative study shows that with the proposed two operation modes of ICRMC, the proposed converter has the best capability to maintain lowest total semiconductor power stress among the existing state of the art solutions when the input voltage varies from 36V to 60V. Furthermore, zero current switching (ZCS) can be always achieved on the switching devices in ICRMC under different operating points. A 600W converter has been simulated to validate the theoretical analysis. The estimated peak efficiency can be as high as 97.65%. Fully debugged prototype and experimental results are provided in this paper.
  5. In this paper, a new topology for grid-connected solar PV inverter is proposed. The proposed topology employs an LLC resonant converter with high frequency isolation transformer in the DC-DC stage. The DC-DC converter stage is controlled to generate a rectified sine wave voltage and current at the line frequency. An unfolder inverter interfaces between this DC stage and the grid. Both phase-shift and frequency control methods are used to control the LLC resonant converter. The switching frequency is determined depending on the phase-shift angle to extend the zero-voltage switching (ZVS) region. The transformer leakage and magnetization inductances are also properly designed to provide ZVS for wide operation area. The LLC converter operates in the ZVS region except the narrow band around the zero-crossings of the inverter output current. Since the LLC resonant converter has a high frequency transformer, the line frequency transformer requirement is eliminated, and thus more compact and efficient design is obtained. The proposed topology is validated by the simulation and experimental results.