skip to main content

Title: Dual-storage-port Nonvolatile SRAM based on Back-end-of-the-line Processed Hf0.5Zr0.5O2 Ferroelectric Capacitors Towards 3D Selector-free Cross-point Memory
This work presents the design and experimental demonstration of a novel dual-storage-portnonvolatile SRAM based on back-end-of-the-line processed Hf0.5Zr0.5O2-based metal-ferroelectric-metalcapacitors, which offers significant advantages over the conventional single-storage-port version withoutarea penalty, and paves the way for implementing our proposed selector-free 3D cross-point memory.
Authors:
; ; ;
Editors:
Liu, M.
Award ID(s):
1941316
Publication Date:
NSF-PAR ID:
10207162
Journal Name:
IEEE transactions on electron devices
Volume:
8
Issue:
93
Page Range or eLocation-ID:
935-938
ISSN:
1557-9646
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advancements in deep learning techniques facilitate intelligent-query support in diverse applications, such as content-based image retrieval and audio texturing. Unlike conventional key-based queries, these intelligent queries lack efficient indexing and require complex compute operations for feature matching. To achieve high-performance intelligent querying against massive datasets, modern computing systems employ GPUs in-conjunction with solid-state drives (SSDs) for fast data access and parallel data processing. However, our characterization with various intelligent-query workloads developed with deep neural networks (DNNs), shows that the storage I/O bandwidth is still the major bottleneck that contributes 56%--90% of the query execution time. To this end, we present DeepStore, an in-storage accelerator architecture for intelligent queries. It consists of (1) energy-efficient in-storage accelerators designed specifically for supporting DNN-based intelligent queries, under the resource constraints in modern SSD controllers; (2) a similarity-based in-storage query cache to exploit the temporal locality of user queries for further performance improvement; and (3) a lightweight in-storage runtime system working as the query engine, which provides a simple software abstraction to support different types of intelligent queries. DeepStore exploits SSD parallelisms with design space exploration for achieving the maximal energy efficiency for in-storage accelerators. We validate DeepStore design with an SSD simulator, andmore »evaluate it with a variety of vision, text, and audio based intelligent queries. Compared with the state-of-the-art GPU+SSD approach, DeepStore improves the query performance by up to 17.7×, and energy-efficiency by up to 78.6×.« less
  2. Current hardware and application storage trends put immense pressure on the operating system's storage subsystem. On the hardware side, the market for storage devices has diversified to a multi-layer storage topology spanning multiple orders of magnitude in cost and performance. Above the file system, applications increasingly need to process small, random IO on vast data sets with low latency, high throughput, and simple crash consistency. File systems designed for a single storage layer cannot support all of these demands together. We present Strata, a cross-media file system that leverages the strengths of one storage media to compensate for weaknesses of another. In doing so, Strata provides performance, capacity, and a simple, synchronous IO model all at once, while having a simpler design than that of file systems constrained by a single storage device. At its heart, Strata uses a log-structured approach with a novel split of responsibilities among user mode, kernel, and storage layers that separates the concerns of scalable, high-performance persistence from storage layer management. We quantify the performance benefits of Strata using a 3-layer storage hierarchy of emulated NVM, a flash-based SSD, and a high-density HDD. Strata has 20-30% better latency and throughput, across several unmodified applications, comparedmore »to file systems purpose-built for each layer, while providing synchronous and unified access to the entire storage hierarchy. Finally, Strata achieves up to 2.8x better throughput than a block-based 2-layer cache provided by Linux's logical volume manager.« less
  3. Deoxyribonucleic Acid (DNA) as a storage medium with high density and long-term preservation properties can satisfy the requirement of archival storage for rapidly increased digital volume. The read and write processes of DNA storage are error-prone. Images widely used in social media have the properties of fault tolerance which are well fitted to the DNA storage. However, prior work simply investigated the feasibility of DNA storage storing different types of data and simply store images in DNA storage, which did not fully investigate the fault-tolerant potential of images in the DNA storage. In this paper, we proposed a new image-based DNA system called IMG-DNA, which can efficiently store images in DNA storage with improved DNA storage robustness. First, a new DNA architecture is proposed to fit JPEG-based images and improve the image’s robustness in DNA storage. Moreover, barriers inserted in DNA sequences efficiently prevent error propagation in images of DNA storage. The experimental results indicate that the proposed IMG-DNA achieves much higher fault-tolerant than prior work.
  4. As the size of data generated every day grows dramatically, the computational bottleneck of computer systems has shifted toward storage devices. The interface between the storage and the computational platforms has become the main limitation due to its limited bandwidth, which does not scale when the number of storage devices increases. Interconnect networks do not provide simultaneous access to all storage devices and thus limit the performance of the system when executing independent operations on different storage devices. Offloading the computations to the storage devices eliminates the burden of data transfer from the interconnects. Near-storage computing offloads a portion of computations to the storage devices to accelerate big data applications. In this article, we propose a generic near-storage sort accelerator for data analytics, NASCENT2, which utilizes Samsung SmartSSD, an NVMe flash drive with an on-board FPGA chip that processes data in situ. NASCENT2 consists of dictionary decoder, sort, and shuffle FPGA-based accelerators to support sorting database tables based on a key column with any arbitrary data type. It exploits data partitioning applied by data processing management systems, such as SparkSQL, to breakdown the sort operations on colossal tables to multiple sort operations on smaller tables. NASCENT2 generic sort provides 2more »× speedup and 15.2 × energy efficiency improvement as compared to the CPU baseline. It moreover considers the specifications of the SmartSSD (e.g., the FPGA resources, interconnect network, and solid-state drive bandwidth) to increase the scalability of computer systems as the number of storage devices increases. With 12 SmartSSDs, NASCENT2 is 9.9× (137.2 ×) faster and 7.3 × (119.2 ×) more energy efficient in sorting the largest tables of TPCC and TPCH benchmarks than the FPGA (CPU) baseline.« less
  5. We present ColumnBurst, a memory-efficient, near-storage hardware accelerator for database join queries. While the paradigm of near-storage computation has demonstrated performance and efficiency benefits on many workloads by reducing data movement overhead, memory-bound operations such as relational joins on unsorted data have been relatively inefficient with fast modern storage devices, due to the limited capacity and performance of memory available on the near-storage processing engine. ColumnBurst delivers very high performance even on such complex queries, while staying within the memory performance and capacity budget of what is typically already available on off-the-shelf storage devices. ColumnBurst achieves this via a compact, hardware implementation of sorting-based group-by aggregation and join algorithms, instead of the conventional hash-based algorithms. We evaluate ColumnBurst using an FPGA-based prototype with 1 GB of slow on-device DDR3 DRAM, and show that on benchmarks including TPC-H queries with join queries on unsorted columns, it outperforms MonetDB on a 6-core i7 with 32 GB of DRAM by over 7x, and ColumnBurst using a near-storage hash join algorithm by 2x.