skip to main content


Title: Dual-storage-port Nonvolatile SRAM based on Back-end-of-the-line Processed Hf0.5Zr0.5O2 Ferroelectric Capacitors Towards 3D Selector-free Cross-point Memory
This work presents the design and experimental demonstration of a novel dual-storage-portnonvolatile SRAM based on back-end-of-the-line processed Hf0.5Zr0.5O2-based metal-ferroelectric-metalcapacitors, which offers significant advantages over the conventional single-storage-port version withoutarea penalty, and paves the way for implementing our proposed selector-free 3D cross-point memory.  more » « less
Award ID(s):
1941316
NSF-PAR ID:
10207162
Author(s) / Creator(s):
; ; ;
Editor(s):
Liu, M.
Date Published:
Journal Name:
IEEE transactions on electron devices
Volume:
8
Issue:
93
ISSN:
1557-9646
Page Range / eLocation ID:
935-938
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    DNA-based data storage is a quickly growing field that hopes to harness the massive theoretical information density of DNA molecules to produce a competitive next-generation storage medium suitable for archival data. In recent years, many DNA-based storage system designs have been proposed. Given that no common infrastructure exists for simulating these storage systems, comparing many different designs along with many different error models is increasingly difficult. To address this challenge, we introduce FrameD, a simulation infrastructure for DNA storage systems that leverages the underlying modularity of DNA storage system designs to provide a framework to express different designs while being able to reuse common components.

    Results

    We demonstrate the utility of FrameD and the need for a common simulation platform using a case study. Our case study compares designs that utilize strand copies differently, some that align strand copies using multiple sequence alignment algorithms and others that do not. We found that the choice to include multiple sequence alignment in the pipeline is dependent on the error rate and the type of errors being injected and is not always beneficial. In addition to supporting a wide range of designs, FrameD provides the user with transparent parallelism to deal with a large number of reads from sequencing and the need for many fault injection iterations. We believe that FrameD fills a void in the tools publicly available to the DNA storage community by providing a modular and extensible framework with support for massive parallelism. As a result, it will help accelerate the design process of future DNA-based storage systems.

    Availability and implementation

    The source code for FrameD along with the data generated during the demonstration of FrameD is available in a public Github repository at https://github.com/dna-storage/framed, (https://dx.doi.org/10.5281/zenodo.7757762).

     
    more » « less
  2. Recent advancements in deep learning techniques facilitate intelligent-query support in diverse applications, such as content-based image retrieval and audio texturing. Unlike conventional key-based queries, these intelligent queries lack efficient indexing and require complex compute operations for feature matching. To achieve high-performance intelligent querying against massive datasets, modern computing systems employ GPUs in-conjunction with solid-state drives (SSDs) for fast data access and parallel data processing. However, our characterization with various intelligent-query workloads developed with deep neural networks (DNNs), shows that the storage I/O bandwidth is still the major bottleneck that contributes 56%--90% of the query execution time. To this end, we present DeepStore, an in-storage accelerator architecture for intelligent queries. It consists of (1) energy-efficient in-storage accelerators designed specifically for supporting DNN-based intelligent queries, under the resource constraints in modern SSD controllers; (2) a similarity-based in-storage query cache to exploit the temporal locality of user queries for further performance improvement; and (3) a lightweight in-storage runtime system working as the query engine, which provides a simple software abstraction to support different types of intelligent queries. DeepStore exploits SSD parallelisms with design space exploration for achieving the maximal energy efficiency for in-storage accelerators. We validate DeepStore design with an SSD simulator, and evaluate it with a variety of vision, text, and audio based intelligent queries. Compared with the state-of-the-art GPU+SSD approach, DeepStore improves the query performance by up to 17.7×, and energy-efficiency by up to 78.6×. 
    more » « less
  3. Serverless platforms offer on-demand computation and represent a significant shift from previous platforms that typically required resources to be pre-allocated (e.g., virtual machines). As serverless platforms have evolved, they have become suitable for a much wider range of applications than their original use cases. However, storage access remains a pain point that holds serverless back from becoming a completely generic computation platform. Existing storage for serverless typically uses an object interface. Although object APIs are simple to use, they lack the richness, versatility, and performance of file based APIs. Additionally, there is a large body of existing applications that relies on file-based interfaces. The lack of file based storage options prevents these applications from being ported to serverless environments. In this paper, we present F3, a file system that offers features to improve file access in serverless platforms: (1) efficient handling of ephemeral data, by placing ephemeral and non-ephemeral data on storage that exists at a different points along the durability-performance tradeoff continuum, (2) locality-aware data scheduling, and (3) efficient reading while writing. We modified OpenWhisk to support attaching file-based storage and to leverage F3's features using hints. Our prototype evaluation of F3 shows improved performance of up to 1.5--6.5x compared to existing storage systems. 
    more » « less
  4. Current hardware and application storage trends put immense pressure on the operating system's storage subsystem. On the hardware side, the market for storage devices has diversified to a multi-layer storage topology spanning multiple orders of magnitude in cost and performance. Above the file system, applications increasingly need to process small, random IO on vast data sets with low latency, high throughput, and simple crash consistency. File systems designed for a single storage layer cannot support all of these demands together. We present Strata, a cross-media file system that leverages the strengths of one storage media to compensate for weaknesses of another. In doing so, Strata provides performance, capacity, and a simple, synchronous IO model all at once, while having a simpler design than that of file systems constrained by a single storage device. At its heart, Strata uses a log-structured approach with a novel split of responsibilities among user mode, kernel, and storage layers that separates the concerns of scalable, high-performance persistence from storage layer management. We quantify the performance benefits of Strata using a 3-layer storage hierarchy of emulated NVM, a flash-based SSD, and a high-density HDD. Strata has 20-30% better latency and throughput, across several unmodified applications, compared to file systems purpose-built for each layer, while providing synchronous and unified access to the entire storage hierarchy. Finally, Strata achieves up to 2.8x better throughput than a block-based 2-layer cache provided by Linux's logical volume manager. 
    more » « less
  5. null (Ed.)
    Deoxyribonucleic Acid (DNA) as a storage medium with high density and long-term preservation properties can satisfy the requirement of archival storage for rapidly increased digital volume. The read and write processes of DNA storage are error-prone. Images widely used in social media have the properties of fault tolerance which are well fitted to the DNA storage. However, prior work simply investigated the feasibility of DNA storage storing different types of data and simply store images in DNA storage, which did not fully investigate the fault-tolerant potential of images in the DNA storage. In this paper, we proposed a new image-based DNA system called IMG-DNA, which can efficiently store images in DNA storage with improved DNA storage robustness. First, a new DNA architecture is proposed to fit JPEG-based images and improve the image’s robustness in DNA storage. Moreover, barriers inserted in DNA sequences efficiently prevent error propagation in images of DNA storage. The experimental results indicate that the proposed IMG-DNA achieves much higher fault-tolerant than prior work. 
    more » « less