Abstract Silver nanowires (AgNWs) hold great promise for applications in wearable electronics, flexible solar cells, chemical and biological sensors, photonic/plasmonic circuits, and scanning probe microscopy (SPM) due to their unique plasmonic, mechanical, and electronic properties. However, the lifetime, reliability, and operating conditions of AgNW-based devices are significantly restricted by their poor chemical stability, limiting their commercial potentials. Therefore, it is crucial to create a reliable oxidation barrier on AgNWs that provides long-term chemical stability to various optical, electrical, and mechanical devices while maintaining their high performance. Here we report a room-temperature solution-phase approach to grow an ultra-thin, epitaxial gold coating on AgNWs to effectively shield the Ag surface from environmental oxidation. The Ag@Au core-shell nanowires (Ag@Au NWs) remain stable in air for over six months, under elevated temperature and humidity (80 °C and 100% humidity) for twelve weeks, in physiological buffer solutions for three weeks, and can survive overnight treatment of an oxidative solution (2% H 2 O 2 ). The Ag@Au core-shell NWs demonstrated comparable performance as pristine AgNWs in various electronic, optical, and mechanical devices, such as transparent mesh electrodes, surface-enhanced Raman spectroscopy (SERS) substrates, plasmonic waveguides, plasmonic nanofocusing probes, and high-aspect-ratio, high-resolution atomic force microscopy (AFM) probes. These Au@Ag core-shell NWs offer a universal solution towards chemically-stable AgNW-based devices without compromising material property or device performance.
more »
« less
This content will become publicly available on July 16, 2025
Decoding the Effect of Synthesis Factors on Morphology of Nanomaterials: A Case Study to Identify and Optimize Experimental Conditions for Silver Nanowires
Silver nanowires (AgNWs) are one kind of nanomaterials for various applications such as solar panel cells and biosensors. However, the morphology of AgNWs, particularly their length and diameter, plays a critical role in determining the efficiency of energy storage systems and the transmittance of biosensors. Thus, it is imperative to study synthesis strategy for morphology control. This study focuses on synthesizing AgNWs through the solvothermal approach and aims to understand the individual and combined effects of three nucleants, NaCl, Fe(NO3)3 and NaBr, on the morphology of AgNWs. Using a modified successive multistep growth (SMG) approach and fine-tuning the nucleant concentrations, this study synthesized AgNWs with controllable aspect ratios, while minimizing the presence of undesirable byproducts like nanoparticles. Our results demonstrated the successful synthesis of AgNWs with favorable morphologies, including lengths of approximately 180 µm and diameters of 40 nm, thus resulting in aspect ratios of 4500. In addition, to assess the quality of the synthesized AgNWs, this work developed computational tools that uses MATLAB to automate the analysis of scanning electron microscope (SEM) images for detecting silver nanoparticles. This automated approach provides a quantitative analysis tool for material characterization and holds the promise for long-term evaluation of diverse AgNW samples, thereby paving the way for advancements in their synthesis and application. Overall, this study demonstrates the significance of morphology control in AgNW synthesis and presents a robust framework for material characterization and quality analysis.
more »
« less
- Award ID(s):
- 2426614
- PAR ID:
- 10527460
- Publisher / Repository:
- MDPI, Processes
- Date Published:
- Journal Name:
- Processes
- Volume:
- 12
- Issue:
- 7
- ISSN:
- 2227-9717
- Page Range / eLocation ID:
- 1487
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chemically-synthesized single-crystalline silver nanowire (AgNW) probes can combine the scanning tunneling microscopy (STM) technique with tip-enhanced Raman scattering spectroscopy (TERS) for complementary morphological and chemical information with nanoscale spatial resolution. However, its performance has been limited by the blunt nanowire tip geometry, the insulating surfactant layer coating AgNW surfaces, and the thermal-induced mechanical vibrations. Here, we report a reproducible fabrication method for the preparation of sharp-tip AgNW-based TERS probes. By removing the polyvinylpyrrolidone (PVP) surfactant molecules from the AgNW surfaces for stable electrical conductivity and controlling the protruding length with μm-level accuracy for improved mechanical stability, we demonstrate atomic-resolution STM imaging with the sharp-tip AgNW probe. Furthermore, the sharp-tip AgNW has an excellent TER enhancement (∼1.1 × 10 6 ), which is about 66 folds of that achieved by regular AgNWs. Our experiments demonstrate that AgNWs with clean interfaces and the proper tip geometry can provide reliable and reproducible STM and TER characterizations, which remove the hurdles preventing the implementation of AgNW in STM-based near-field optical applications for a broad community.more » « less
-
Semitransparent organic photovoltaics (ST‐OPVs) provide a potentially facile route for some applications in building integrated photovoltaics. One of the challenges in developing large‐scale, printable ST‐OPVs is to address the need for high‐performance and fully solution‐processed top electrodes, allowing the replacement of the evaporated thin metallic films (Ag, Au, and Al). Silver nanowire (AgNW) is considered a promising candidate for the substitution due to its excellent transparency, conductivity, and solution processability. Herein, a novel bimodal AgNW (AgNW‐BM) electrode is reported, comprising AgNWs of two different aspect ratios. It is shown that the AgNW‐BM film achieves lower sheet resistance and higher visible transmittance than each monodisperse AgNW film, respectively. Furthermore, ST‐OPVs based on PTB7‐Th:IEICO‐4F with AgNW‐BM top electrodes are fabricated, which can obtain a maximum power conversion efficiency (PCE) of 7.49% with an average visible transmittance (AVT) of 33%. The ST‐devices also demonstrate an enhanced reproducibility and excellent color‐rendering index of 90. In addition, the bimodal top electrode is successfully implemented in the PM6:Y6 system with a higher PCE of 9.79% and with an AVT of 23%, demonstrating the universality for various semiconductor systems. Our work provides a simple strategy to realize fully solution‐processed, highly efficient ST‐OPVs.more » « less
-
High-entropy alloys (HEAs) are a class of metal alloys consisting of four or more molar equal or near-equal elements. HEA nanomaterials have garnered significant interest due to their wide range of applications, such as electrocatalysis, welding, and brazing. Their unique multi-principle high-entropy effect allows for the tailoring of the alloy composition to facilitate specific electrochemical reactions. This study focuses on the synthesis of high-purity HEA nanoparticles using the method of femtosecond laser ablation synthesis in liquid. The use of ultrashort energy pulses in femtosecond lasers enables uniform ablation of materials at significantly lower power levels compared to longer pulse or continuous pulse lasers. We investigate how various femtosecond laser parameters affect the morphology, phase, and other characteristics of the synthesized nanoparticles. An innovative aspect of our solution is its ability to rapidly generate multi-component nanoparticles with a high fidelity as the input multi-component target material at a significant yielding rate. Our research thus focuses on a novel synthesis of high-entropy alloying CuCoMn1.75NiFe0.25 nanoparticles. We explore the characterization and unique properties of the nanoparticles and consider their electrocatalytic applications, including high power density aluminum air batteries, as well as their efficacy in the oxygen reduction reaction (ORR). Additionally, we report a unique nanowire fabrication phenomenon achieved through nanojoining. The findings from this study shed light on the potential of femtosecond laser ablation synthesis in liquid (FLASiL) as a promising technique for producing high-purity HEA nanoparticles.more » « less
-
null (Ed.)Conductive and transparent coatings consisting of silver nanowires (AgNWs) are promising candidates for emerging flexible electronics applications. Coatings of aligned AgNWs offer unusual electronic and optical anisotropies, with potential for use in micro-circuits, antennas, and polarization sensors. Here we explore a microfluidics setup and flow-induced alignment mechanisms to create centimeter-scale highly conductive coatings of aligned AgNWs with order parameters reaching 0.84, leading to large electrical and optical anisotropies. By varying flow rates, we establish the relationship between the shear rate and the alignment and investigate possible alignment mechanisms. The angle-dependent sheet resistance of the aligned AgNW networks exhibits an electronic transport anisotropy of ∼10× while maintaining low resistivity (<50 Ω sq −1 ) in all directions. When illuminated, the aligned AgNW coatings exhibit angle- and polarization-dependent colors, and the polarized reflection anisotropy can be as large as 25. This large optical anisotropy is due to a combination of alignment, polarization response, and angle-dependent scattering of the aligned AgNWs.more » « less