We consider the topological and geometric reconstruction of a geodesic subspace of [Formula: see text] both from the Čech and Vietoris-Rips filtrations on a finite, Hausdorff-close, Euclidean sample. Our reconstruction technique leverages the intrinsic length metric induced by the geodesics on the subspace. We consider the distortion and convexity radius as our sampling parameters for the reconstruction problem. For a geodesic subspace with finite distortion and positive convexity radius, we guarantee a correct computation of its homotopy and homology groups from the sample. This technique provides alternative sampling conditions to the existing and commonly used conditions based on weak feature size and [Formula: see text]–reach, and performs better under certain types of perturbations of the geodesic subspace. For geodesic subspaces of [Formula: see text], we also devise an algorithm to output a homotopy equivalent geometric complex that has a very small Hausdorff distance to the unknown underlying space.
Metric Thickenings and Group Actions
Let [Formula: see text] be a group acting properly and by isometries on a metric space [Formula: see text]; it follows that the quotient or orbit space [Formula: see text] is also a metric space. We study the Vietoris–Rips and Čech complexes of [Formula: see text]. Whereas (co)homology theories for metric spaces let the scale parameter of a Vietoris–Rips or Čech complex go to zero, and whereas geometric group theory requires the scale parameter to be sufficiently large, we instead consider intermediate scale parameters (neither tending to zero nor to infinity). As a particular case, we study the Vietoris–Rips and Čech thickenings of projective spaces at the first scale parameter where the homotopy type changes.
- Publication Date:
- NSF-PAR ID:
- 10207695
- Journal Name:
- Journal of Topology and Analysis
- Page Range or eLocation-ID:
- 1 to 27
- ISSN:
- 1793-5253
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We derive conditions under which the reconstruction of a target space is topologically correct via the Čech complex or the Vietoris-Rips complex obtained from possibly noisy point cloud data. We provide two novel theoretical results. First, we describe sufficient conditions under which any non-empty intersection of finitely many Euclidean balls intersected with a positive reach set is contractible, so that the Nerve theorem applies for the restricted Čech complex. Second, we demonstrate the homotopy equivalence of a positive μ-reach set and its offsets. Applying these results to the restricted Čech complex and using the interleaving relations with the Čech complex (or the Vietoris-Rips complex), we formulate conditions guaranteeing that the target space is homotopy equivalent to the Čech complex (or the Vietoris-Rips complex), in terms of the μ-reach. Our results sharpen existing results.
-
We address the following natural extension problem for group actions: Given a group [Formula: see text], a subgroup [Formula: see text], and an action of [Formula: see text] on a metric space, when is it possible to extend it to an action of the whole group [Formula: see text] on a (possibly different) metric space? When does such an extension preserve interesting properties of the original action of [Formula: see text]? We begin by formalizing this problem and present a construction of an induced action which behaves well when [Formula: see text] is hyperbolically embedded in [Formula: see text]. Moreover, we show that induced actions can be used to characterize hyperbolically embedded subgroups. We also obtain some results for elementary amenable groups.
-
This work concerns the asymptotic behavior of solutions to a (strictly) subcritical fluid model for a data communication network, where file sizes are generally distributed and the network operates under a fair bandwidth-sharing policy. Here we consider fair bandwidth-sharing policies that are a slight generalization of the [Formula: see text]-fair policies introduced by Mo and Walrand [Mo J, Walrand J (2000) Fair end-to-end window-based congestion control. IEEE/ACM Trans. Networks 8(5):556–567.]. Since the year 2000, it has been a standing problem to prove stability of the data communications network model of Massoulié and Roberts [Massoulié L, Roberts J (2000) Bandwidth sharing and admission control for elastic traffic. Telecommunication Systems 15(1):185–201.], with general file sizes and operating under fair bandwidth sharing policies, when the offered load is less than capacity (subcritical conditions). A crucial step in an approach to this problem is to prove stability of subcritical fluid model solutions. In 2012, Paganini et al. [Paganini F, Tang A, Ferragut A, Andrew LLH (2012) Network stability under alpha fair bandwidth allocation with general file size distribution. IEEE Trans. Automatic Control 57(3):579–591.] introduced a Lyapunov function for this purpose and gave an argument, assuming that fluid model solutions are sufficiently smooth in timemore »
-
Fix a weakly minimal (i.e. superstable [Formula: see text]-rank [Formula: see text]) structure [Formula: see text]. Let [Formula: see text] be an expansion by constants for an elementary substructure, and let [Formula: see text] be an arbitrary subset of the universe [Formula: see text]. We show that all formulas in the expansion [Formula: see text] are equivalent to bounded formulas, and so [Formula: see text] is stable (or NIP) if and only if the [Formula: see text]-induced structure [Formula: see text] on [Formula: see text] is stable (or NIP). We then restrict to the case that [Formula: see text] is a pure abelian group with a weakly minimal theory, and [Formula: see text] is mutually algebraic (equivalently, weakly minimal with trivial forking). This setting encompasses most of the recent research on stable expansions of [Formula: see text]. Using various characterizations of mutual algebraicity, we give new examples of stable structures of the form [Formula: see text]. Most notably, we show that if [Formula: see text] is a weakly minimal additive subgroup of the algebraic numbers, [Formula: see text] is enumerated by a homogeneous linear recurrence relation with algebraic coefficients, and no repeated root of the characteristic polynomial of [Formula: seemore »