skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1830676

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A flag is a nested sequence of vector spaces. The type of the flag encodes the sequence of dimensions of the vector spaces making up the flag. A flag manifold is a manifold whose points parameterize all flags of a fixed type in a fixed vector space. This paper provides the mathematical framework necessary for implementing self-organizing mappings on flag manifolds. Flags arise implicitly in many data analysis contexts including wavelet, Fourier, and singular value decompositions. The proposed geometric framework in this paper enables the computation of distances between flags, the computation of geodesics between flags, and the ability to move one flag a prescribed distance in the direction of another flag. Using these operations as building blocks, we implement the SOM algorithm on a flag manifold. The basic algorithm is applied to the problem of parameterizing a set of flags of a fixed type. 
    more » « less
  2. We propose a new tool for visualizing complex, and potentially large and high-dimensional, data sets called Centroid-Encoder (CE). The architecture of the Centroid-Encoder is similar to the autoencoder neural network but it has a modified target, i.e., the class centroid in the ambient space. As such, CE incorporates label information and performs a supervised data visualization. The training of CE is done in the usual way with a training set whose parameters are tuned using a validation set. The evaluation of the resulting CE visualization is performed on a sequestered test set where the generalization of the model is assessed both visually and quantitatively. We present a detailed comparative analysis of the method using a wide variety of data sets and techniques, both supervised and unsupervised, including NCA, non-linear NCA, t-distributed NCA, t-distributed MCML, supervised UMAP, supervised PCA, Colored Maximum Variance Unfolding, supervised Isomap, Parametric Embedding, supervised Neighbor Retrieval Visualizer, and Multiple Relational Embedding. An analysis of variance using PCA demonstrates that a non-linear preprocessing by the CE transformation of the data captures more variance than PCA by dimension. 
    more » « less
  3. Finding prototypes (e.g., mean and median) for a dataset is central to a number of common machine learning algorithms. Subspaces have been shown to provide useful, robust representations for datasets of images, videos and more. Since subspaces correspond to points on a Grassmann manifold, one is led to consider the idea of a subspace prototype for a Grassmann-valued dataset. While a number of different subspace prototypes have been described, the calculation of some of these prototypes has proven to be computationally expensive while other prototypes are affected by outliers and produce highly imperfect clustering on noisy data. This work proposes a new subspace prototype, the flag median, and introduces the FlagIRLS algorithm for its calculation. We provide evidence that the flag median is robust to outliers and can be used effectively in algorithms like Linde-Buzo-Grey (LBG) to produce improved clusterings on Grassmannians. Numerical experiments include a synthetic dataset, the MNIST handwritten digits dataset, the Mind's Eye video dataset and the UCF YouTube action dataset. The flag median is compared the other leading algorithms for computing prototypes on the Grassmannian, namely, the l_2-median and to the flag mean. We find that using FlagIRLS to compute the flag median converges in 4 iterations on a synthetic dataset. We also see that Grassmannian LBG with a codebook size of 20 and using the flag median produces at least a 10% improvement in cluster purity over Grassmannian LBG using the flag mean or l_2-median on the Mind's Eye dataset. 
    more » « less
  4. The shape and orientation of data clouds reflect variability in observations that can confound pattern recognition systems. Subspace methods, utilizing Grassmann manifolds, have been a great aid in dealing with such variability. However, this usefulness begins to falter when the data cloud contains sufficiently many outliers corresponding to stray elements from another class or when the number of data points is larger than the number of features. We illustrate how nested subspace methods, utilizing flag manifolds, can help to deal with such additional confounding factors. Flag manifolds, which are parameter spaces for nested sequences of subspaces, are a natural geometric generalization of Grassmann manifolds. We utilize and extend known algorithms for determining the minimal length geodesic, the initial direction generating the minimal length geodesic, and the distance between any pair of points on a flag manifold. The approach is illustrated in the context of (hyper) spectral imagery showing the impact of ambient dimension, sample dimension, and flag structure. 
    more » « less
  5. A flag is a nested sequence of vector spaces. The type of the flag encodes the sequence of dimensions of the vector spaces making up the flag. A flag manifold is a manifold whose points parameterize all flags of a fixed type in a fixed vector space. This paper provides the mathematical framework necessary for implementing self-organizing mappings on flag manifolds. Flags arise implicitly in many data analysis contexts including wavelet, Fourier, and singular value decompositions. The proposed geometric framework in this paper enables the computation of distances between flags, the computation of geodesics between flags, and the ability to move one flag a prescribed distance in the direction of another flag. Using these operations as building blocks, we implement the SOM algorithm on a flag manifold. The basic algorithm is applied to the problem of parameterizing a set of flags of a fixed type. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    Let [Formula: see text] be a group acting properly and by isometries on a metric space [Formula: see text]; it follows that the quotient or orbit space [Formula: see text] is also a metric space. We study the Vietoris–Rips and Čech complexes of [Formula: see text]. Whereas (co)homology theories for metric spaces let the scale parameter of a Vietoris–Rips or Čech complex go to zero, and whereas geometric group theory requires the scale parameter to be sufficiently large, we instead consider intermediate scale parameters (neither tending to zero nor to infinity). As a particular case, we study the Vietoris–Rips and Čech thickenings of projective spaces at the first scale parameter where the homotopy type changes. 
    more » « less
  8. A flag is a nested sequence of vector spaces. The type of the flag is determined by the sequence of dimensions of the vector spaces making up the flag. A flag manifold is a manifold whose points parameterize all flags of a particular type in a fixed vector space. This paper provides the mathematical framework necessary for implementing self-organizing mappings on flag manifolds. Flags arise implicitly in many data analysis techniques for instance in wavelet, Fourier, and singular value decompositions. The proposed geometric framework in this paper enables the computation of distances between flags, the computation of geodesics between flags, and the ability to move one flag a prescribed distance in the direction of another flag. Using these operations as building blocks, we implement the SOM algorithm on a flag manifold. The basic algorithm is applied to the problem of parameterizing a set of flags of a fixed type. 
    more » « less