skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 22, 2026

Title: Accelerated Over-Relaxation Heavy-Ball Method: Achieving Global Accelerated Convergence with Broad Generalization
The heavy-ball momentum method accelerates gradient descent with a momentum term but lacks accelerated convergence for general smooth strongly convex problems. This work introduces the Accelerated Over-Relaxation Heavy-Ball (AOR-HB) method, the first variant with provable global and accelerated convergence for such problems. AOR-HB closes a long-standing theoretical gap, extends to composite convex optimization and min-max problems, and achieves optimal complexity bounds. It offers three key advantages: (1) broad generalization ability, (2) potential to reshape acceleration techniques, and (3) conceptual clarity and elegance compared to existing methods.  more » « less
Award ID(s):
2309777 2309785
PAR ID:
10594769
Author(s) / Creator(s):
;
Publisher / Repository:
International Conference on Learning Representations (ICLR)
Date Published:
Subject(s) / Keyword(s):
Optimization theory heavy ball momentum acceleration composite optimization min-max, saddle point problem
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Momentum methods such as Polyak's heavy ball (HB) method, Nesterov's accelerated gradient (AG) as well as accelerated projected gradient (APG) method have been commonly used in machine learning practice, but their performance is quite sensitive to noise in the gradients. We study these methods under a first-order stochastic oracle model where noisy estimates of the gradients are available. For strongly convex problems, we show that the distribution of the iterates of AG converges with the accelerated linear rate to a ball of radius " centered at a unique invariant distribution in the 1-Wasserstein metric where  is the condition number as long as the noise variance is smaller than an explicit upper bound we can provide. Our analysis also certifies linear convergence rates as a function of the stepsize, momentum parameter and the noise variance; recovering the accelerated rates in the noiseless case and quantifying the level of noise that can be tolerated to achieve a given performance. To the best of our knowledge, these are the first linear convergence results for stochastic momentum methods under the stochastic oracle model. We also develop finer results for the special case of quadratic objectives, extend our results to the APG method and weakly convex functions showing accelerated rates when the noise magnitude is sufficiently small. 
    more » « less
  2. We study performance of accelerated first-order optimization algorithms in the presence of additive white stochastic disturbances. For strongly convex quadratic problems, we explicitly evaluate the steady-state variance of the optimization variable in terms of the eigenvalues of the Hessian of the objective function. We demonstrate that, as the condition number increases, variance amplification of both Nesterov's accelerated method and the heavy-ball method by Polyak is significantly larger than that of the standard gradient descent. In the context of distributed computation over networks, we examine the role of network topology and spatial dimension on the performance of these first-order algorithms. For d-dimensional tori, we establish explicit asymptotic dependence for the variance amplification on the network size and the corresponding condition number. Our results demonstrate detrimental influence of acceleration on amplification of stochastic disturbances and suggest that metrics other than convergence rate have to be considered when evaluating performance of optimization algorithms. 
    more » « less
  3. In this paper, we propose Nesterov Accelerated Shuffling Gradient (NASG), a new algorithm for the convex finite-sum minimization problems. Our method integrates the traditional Nesterov’s acceleration momentum with different shuffling sampling schemes. We show that our algorithm has an improved rate of O(1/T ) using unified shuffling schemes, where T is the number of epochs. This rate is better than that of any other shuffling gradient methods in convex regime. Our convergence analysis does not require an assumption on bounded domain or a bounded gradient condition. For randomized shuffling schemes, we improve the convergence bound further. When employing some initial condition, we show that our method converges faster near the small neighborhood of the solution. Numerical simulations demonstrate the efficiency of our algorithm. 
    more » « less
  4. Abstract Convergence analysis of accelerated first-order methods for convex optimization problems are developed from the point of view of ordinary differential equation solvers. A new dynamical system, called Nesterov accelerated gradient (NAG) flow, is derived from the connection between acceleration mechanism andA-stability of ODE solvers, and the exponential decay of a tailored Lyapunov function along with the solution trajectory is proved. Numerical discretizations of NAG flow are then considered and convergence rates are established via a discrete Lyapunov function. The proposed differential equation solver approach can not only cover existing accelerated methods, such as FISTA, Güler’s proximal algorithm and Nesterov’s accelerated gradient method, but also produce new algorithms for composite convex optimization that possess accelerated convergence rates. Both the convex and the strongly convex cases are handled in a unified way in our approach. 
    more » « less
  5. Abstract Simple stochastic momentum methods are widely used in machine learning optimization, but their good practical performance is at odds with an absence of theoretical guarantees of acceleration in the literature. In this work, we aim to close the gap between theory and practice by showing that stochastic heavy ball momentum retains the fast linear rate of (deterministic) heavy ball momentum on quadratic optimization problems, at least when minibatching with a sufficiently large batch size. The algorithm we study can be interpreted as an accelerated randomized Kaczmarz algorithm with minibatching and heavy ball momentum. The analysis relies on carefully decomposing the momentum transition matrix, and using new spectral norm concentration bounds for products of independent random matrices. We provide numerical illustrations demonstrating that our bounds are reasonably sharp. 
    more » « less