skip to main content

Title: The Communication Complexity of Optimization
We consider the communication complexity of a number of distributed optimization problems. We start with the problem of solving a linear system. Suppose there is a coordinator together with s servers P1, …, Ps, the i-th of which holds a subset A(i) x = b(i) of ni constraints of a linear system in d variables, and the coordinator would like to output an x ϵ ℝd for which A(i) x = b(i) for i = 1, …, s. We assume each coefficient of each constraint is specified using L bits. We first resolve the randomized and deterministic communication complexity in the point-to-point model of communication, showing it is (d2 L + sd) and (sd2L), respectively. We obtain similar results for the blackboard communication model. As a result of independent interest, we show the probability a random matrix with integer entries in {–2L, …, 2L} is invertible is 1–2−Θ(dL), whereas previously only 1 – 2−Θ(d) was known. When there is no solution to the linear system, a natural alternative is to find the solution minimizing the ℓp loss, which is the ℓp regression problem. While this problem has been studied, we give improved upper or lower bounds for every value of p more » ≥ 1. One takeaway message is that sampling and sketching techniques, which are commonly used in earlier work on distributed optimization, are neither optimal in the dependence on d nor on the dependence on the approximation ε, thus motivating new techniques from optimization to solve these problems. Towards this end, we consider the communication complexity of optimization tasks which generalize linear systems, such as linear, semi-definite, and convex programming. For linear programming, we first resolve the communication complexity when d is constant, showing it is (sL) in the point-to-point model. For general d and in the point-to-point model, we show an Õ(sd3L) upper bound and an (d2 L + sd) lower bound. In fact, we show if one perturbs the coefficients randomly by numbers as small as 2−Θ(L), then the upper bound is Õ(sd2L) + poly(dL), and so this bound holds for almost all linear programs. Our study motivates understanding the bit complexity of linear programming, which is related to the running time in the unit cost RAM model with words of O(log(nd)) bits, and we give the fastest known algorithms for linear programming in this model. Read More: https://epubs.siam.org/doi/10.1137/1.9781611975994.106 « less
Authors:
; ;
Award ID(s):
1717349
Publication Date:
NSF-PAR ID:
10208034
Journal Name:
ACM-SIAM Symposium on Discrete Algorithms
Sponsoring Org:
National Science Foundation
More Like this
  1. The Sparsest Cut is a fundamental optimization problem that have been extensively studied. For planar inputs the problem is in P and can be solved in Õ(n 3 ) time if all vertex weights are 1. Despite a significant amount of effort, the best algorithms date back to the early 90’s and can only achieve O(log n)-approximation in Õ(n) time or 3.5-approximation in Õ(n 2 ) time [Rao, STOC92]. Our main result is an Ω(n 2−ε ) lower bound for Sparsest Cut even in planar graphs with unit vertex weights, under the (min, +)-Convolution conjecture, showing that approxima- tions aremore »inevitable in the near-linear time regime. To complement the lower bound, we provide a 3.3-approximation in near-linear time, improving upon the 25-year old result of Rao in both time and accuracy. We also show that our lower bound is not far from optimal by observing an exact algorithm with running time Õ(n 5/2 ) improving upon the Õ(n 3 ) algorithm of Park and Phillips [STOC93]. Our lower bound accomplishes a repeatedly raised challenge by being the first fine-grained lower bound for a natural planar graph problem in P. Building on our construction we prove near-quadratic lower bounds under SETH for variants of the closest pair problem in planar graphs, and use them to show that the popular Average-Linkage procedure for Hierarchical Clustering cannot be simulated in truly subquadratic time. At the core of our constructions is a diamond-like gadget that also settles the complexity of Diameter in distributed planar networks. We prove an Ω(n/ log n) lower bound on the number of communication rounds required to compute the weighted diameter of a network in the CONGET model, even when the underlying graph is planar and all nodes are D = 4 hops away from each other. This is the first poly(n) lower bound in the planar-distributed setting, and it complements the recent poly(D, log n) upper bounds of Li and Parter [STOC 2019] for (exact) unweighted diameter and for (1 + ε) approximate weighted diameter.« less
  2. We study the communication cost (or message complexity) of fundamental distributed symmetry breaking problems, namely, coloring and MIS. While significant progress has been made in understanding and improving the running time of such problems, much less is known about the message complexity of these problems. In fact, all known algorithms need at least Ω(m) communication for these problems, where m is the number of edges in the graph. We addressthe following question in this paper: can we solve problems such as coloring and MIS using sublinear, i.e., o(m) communication, and if sounder what conditions? In a classical result, Awerbuch, Goldreich,more »Peleg, and Vainish [JACM 1990] showed that fundamental global problems such asbroadcast and spanning tree construction require at least o(m) messages in the KT-1 Congest model (i.e., Congest model in which nodes have initial knowledge of the neighbors' ID's) when algorithms are restricted to be comparison-based (i.e., algorithms inwhich node ID's can only be compared). Thirty five years after this result, King, Kutten, and Thorup [PODC 2015] showed that onecan solve the above problems using Õ(n) messages (n is the number of nodes in the graph) in Õ(n) rounds in the KT-1 Congest model if non-comparison-based algorithms are permitted. An important implication of this result is that one can use the synchronous nature of the KT-1 Congest model, using silence to convey information,and solve any graph problem using non-comparison-based algorithms with Õ(n) messages, but this takes an exponential number of rounds. In the asynchronous model, even this is not possible. In contrast, much less is known about the message complexity of local symmetry breaking problems such as coloring and MIS. Our paper fills this gap by presenting the following results. Lower bounds: In the KT-1 CONGEST model, we show that any comparison-based algorithm, even a randomized Monte Carlo algorithm with constant success probability, requires Ω(n 2) messages in the worst case to solve either (△ + 1)-coloring or MIS, regardless of the number of rounds. We also show that Ω(n) is a lower bound on the number ofmessages for any (△ + 1)-coloring or MIS algorithm, even non-comparison-based, and even with nodes having initial knowledge of up to a constant radius. Upper bounds: In the KT-1 CONGEST model, we present the following randomized non-comparison-based algorithms for coloring that, with high probability, use o(m) messages and run in polynomially many rounds.(a) A (△ + 1)-coloring algorithm that uses Õ(n1.5) messages, while running in Õ(D + √ n) rounds, where D is the graph diameter. Our result also implies an asynchronous algorithm for (△ + 1)-coloring with the same message bound but running in Õ(n) rounds. (b) For any constantε > 0, a (1+ε)△-coloring algorithm that uses Õ(n/ε 2 ) messages, while running in Õ(n) rounds. If we increase our input knowledge slightly to radius 2, i.e.,in the KT-2 CONGEST model, we obtain:(c) A randomized comparison-based MIS algorithm that uses Õ(n 1.5) messages. while running in Õ( √n) rounds. While our lower bound results can be viewed as counterparts to the classical result of Awerbuch, Goldreich, Peleg, and Vainish [JACM 90], but for local problems, our algorithms are the first-known algorithms for coloring and MIS that take o(m) messages and run in polynomially many rounds.« less
  3. We study smoothed analysis of distributed graph algorithms, focusing on the fundamental minimum spanning tree (MST) problem. With the goal of studying the time complexity of distributed MST as a function of the "perturbation" of the input graph, we posit a smoothing model that is parameterized by a smoothing parameter 0 ≤ ϵ(n) ≤ 1 which controls the amount of random edges that can be added to an input graph G per round. Informally, ϵ(n) is the probability (typically a small function of n, e.g., n--¼) that a random edge can be added to a node per round. The addedmore »random edges, once they are added, can be used (only) for communication. We show upper and lower bounds on the time complexity of distributed MST in the above smoothing model. We present a distributed algorithm that, with high probability, 1 computes an MST and runs in Õ(min{1/√ϵ(n)2O(√log n), D+ √n}) rounds2 where ϵ is the smoothing parameter, D is the network diameter and n is the network size. To complement our upper bound, we also show a lower bound of Ω(min{1/√ϵ(n), D + √n}). We note that the upper and lower bounds essentially match except for a multiplicative 2O(√log n) polylog(n) factor. Our work can be considered as a first step in understanding the smoothed complexity of distributed graph algorithms.« less
  4. In a recent work (Ghazi et al., SODA 2016), the authors with Komargodski and Kothari initiated the study of communication with contextual uncertainty, a setup aiming to understand how efficient communication is possible when the communicating parties imperfectly share a huge context. In this setting, Alice is given a function f and an input string x, and Bob is given a function g and an input string y. The pair (x,y) comes from a known distribution mu and f and g are guaranteed to be close under this distribution. Alice and Bob wish to compute g(x,y) with high probability. Themore »lack of agreement between Alice and Bob on the function that is being computed captures the uncertainty in the context. The previous work showed that any problem with one-way communication complexity k in the standard model (i.e., without uncertainty, in other words, under the promise that f=g) has public-coin communication at most O(k(1+I)) bits in the uncertain case, where I is the mutual information between x and y. Moreover, a lower bound of Omega(sqrt{I}) bits on the public-coin uncertain communication was also shown. However, an important question that was left open is related to the power that public randomness brings to uncertain communication. Can Alice and Bob achieve efficient communication amid uncertainty without using public randomness? And how powerful are public-coin protocols in overcoming uncertainty? Motivated by these two questions: - We prove the first separation between private-coin uncertain communication and public-coin uncertain communication. Namely, we exhibit a function class for which the communication in the standard model and the public-coin uncertain communication are O(1) while the private-coin uncertain communication is a growing function of n (the length of the inputs). This lower bound (proved with respect to the uniform distribution) is in sharp contrast with the case of public-coin uncertain communication which was shown by the previous work to be within a constant factor from the certain communication. This lower bound also implies the first separation between public-coin uncertain communication and deterministic uncertain communication. Interestingly, we also show that if Alice and Bob imperfectly share a sequence of random bits (a setup weaker than public randomness), then achieving a constant blow-up in communication is still possible. - We improve the lower-bound of the previous work on public-coin uncertain communication. Namely, we exhibit a function class and a distribution (with mutual information I approx n) for which the one-way certain communication is k bits but the one-way public-coin uncertain communication is at least Omega(sqrt{k}*sqrt{I}) bits. Our proofs introduce new problems in the standard communication complexity model and prove lower bounds for these problems. Both the problems and the lower bound techniques may be of general interest.« less
  5. There has been a flurry of recent literature studying streaming algorithms for which the input stream is chosen adaptively by a black-box adversary who observes the output of the streaming algorithm at each time step. However, these algorithms fail when the adversary has access to the internal state of the algorithm, rather than just the output of the algorithm. We study streaming algorithms in the white-box adversarial model, where the stream is chosen adaptively by an adversary who observes the entire internal state of the algorithm at each time step. We show that nontrivial algorithms are still possible. We firstmore »give a randomized algorithm for the L1-heavy hitters problem that outperforms the optimal deterministic Misra-Gries algorithm on long streams. If the white-box adversary is computationally bounded, we use cryptographic techniques to reduce the memory of our L1-heavy hitters algorithm even further and to design a number of additional algorithms for graph, string, and linear algebra problems. The existence of such algorithms is surprising, as the streaming algorithm does not even have a secret key in this model, i.e., its state is entirely known to the adversary. One algorithm we design is for estimating the number of distinct elements in a stream with insertions and deletions achieving a multiplicative approximation and sublinear space; such an algorithm is impossible for deterministic algorithms. We also give a general technique that translates any two-player deterministic communication lower bound to a lower bound for randomized algorithms robust to a white-box adversary. In particular, our results show that for all p ≥ 0, there exists a constant Cp > 1 such that any Cp-approximation algorithm for Fp moment estimation in insertion-only streams with a white-box adversary requires Ω(n) space for a universe of size n. Similarly, there is a constant C > 1 such that any C-approximation algorithm in an insertion-only stream for matrix rank requires Ω(n) space with a white-box adversary. These results do not contradict our upper bounds since they assume the adversary has unbounded computational power. Our algorithmic results based on cryptography thus show a separation between computationally bounded and unbounded adversaries. Finally, we prove a lower bound of Ω(log n) bits for the fundamental problem of deterministic approximate counting in a stream of 0’s and 1’s, which holds even if we know how many total stream updates we have seen so far at each point in the stream. Such a lower bound for approximate counting with additional information was previously unknown, and in our context, it shows a separation between multiplayer deterministic maximum communication and the white-box space complexity of a streaming algorithm« less