skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultra Compact, Ultra Wideband, DC-1GHz CMOS Circulator Based on Quasi-Electrostatic Wave Propagation in Commutated Switched Capacitor Networks
Award ID(s):
1641100
PAR ID:
10208040
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE RFIC Symposium
Page Range / eLocation ID:
55 to 58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A high porosity (88%) and ultrathin (<3 μm) fibrous basement membrane mimic using (A) suspended nanofiber networks for a (B) brain endothelial–pericyte co-culture model. (C) Our approach achieved low cell membrane and nuclei separations. 
    more » « less
  2. Plasmonic materials, and their ability to enable strong concentration of optical fields, have offered a tantalizing foundation for the demonstration of sub-diffraction-limit photonic devices. However, practical and scalable plasmonic optoelectronics for real world applications remain elusive. In this work, we present an infrared photodetector leveraging a device architecture consisting of a “designer” epitaxial plasmonic metal integrated with a quantum-engineered detector structure, all in a mature III-V semiconductor material system. Incident light is coupled into surface plasmon-polariton modes at the detector/designer metal interface, and the strong confinement of these modes allows for a sub-diffractive ( ∼<#comment/> λ<#comment/> 0 / 33 ) detector absorber layer thickness, effectively decoupling the detector’s absorption efficiency and dark current. We demonstrate high-performance detectors operating at non-cryogenic temperatures ( T = 195 K ), without sacrificing external quantum efficiency, and superior to well-established and commercially available detectors. This work provides a practical and scalable plasmonic optoelectronic device architecture with real world mid-infrared applications. 
    more » « less