skip to main content


Title: Efficient Load Flow Techniques Based on Holomorphic Embedding for Distribution Networks
The Holomorphic Embedding Load flow Method (HELM) employs complex analysis to solve the load flow problem. It guarantees finding the correct solution when it exists, and identifying when a solution does not exist. The method, however, is usually computationally less efficient than the traditional Newton-Raphson algorithm, which is generally considered to be a slow method in distribution networks. In this paper, we present two HELM modifications that exploit the radial and weakly meshed topology of distribution networks and significantly reduce computation time relative to the original HELM implementation. We also present comparisons with several popular load flow algorithms applied to various test distribution networks.  more » « less
Award ID(s):
1733827
NSF-PAR ID:
10208102
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE PES General meeting, August 4-8 2019, Atlanta, GA, USA, 5 pages, 2019
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present Dynamic Cross-layer Network Orchestration (DyCroNO), a dynamic service provisioning and load balancing mechanism for IP over optical networks. DyCroNO comprises of the following components: i) an end-end (E2E) service provisioning and virtual path allocation algorithm, ii) a lightweight dynamic bandwidth adjustment strategy that leverages the extended duration statistics to ensure optimal network utilization and guarantee the quality-of-service (QoS), and iii) a load distribution mechanism to optimize the network load distribution at runtime. As another contribution, we design a real-time deep learning technique to predict the network load distribution. We implemented a Long Short-Term Memory-based (LSTM) method with a sliding window technique to dynamically (at runtime) predict network load distributions at various lead times. Simulations were performed over three topologies: NSFNet, Cost266 and Eurolarge using real-world traffic traces to model the traffic patterns. Results show that our approach lowers the mean link load and total resources significantly while improving the resource utilization when compared to existing approaches. Additionally, our deep learning-based method showed promising results in load distribution prediction with low root mean squared error (RMSE) and ∼90% accuracy. URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10144888&isnumber=10144840 
    more » « less
  2. null (Ed.)
    Particle mixing process is critical for the design and quality control of concrete and composite production. This paper develops an algorithm to simulate the high-shear mixing process of a granular flow containing a high proportion of solid particles mixed in a liquid. DEM is employed to simulate solid particle interactions; whereas SPH is implemented to simulate the liquid particles. The two-way coupling force between SPH and DEM particles is used to evaluate the solid-liquid interaction of a multi-phase flow. Using Darcy’s Law, this paper evaluates the coupling force as a function of local mixture porosity. After the model is verified by two benchmark case studies, i.e., a solid particle moving in a liquid and fluid flowing through a porous medium, this method is applied to a high shear mixing problem of two types of solid particles mixed in a viscous liquid by a four-bladed mixer. A homogeneity metric is introduced to characterize the mixing quality of the particulate mixture. The virtual experiments with the present algorithm show that adding more liquid or increasing liquid viscosity slows down the mixing process for a high solid load mix. Although the solid particles can be mixed well eventually, the liquid distribution is not homogeneous, especially when the viscosity of liquid is low. The present SPH-DEM model is versatile and suitable for virtual experiments of particle mixing process with different blades, solid particle densities and sizes, and liquid binders, and thus can expedite the design and development of concrete materials and particulate composites. 
    more » « less
  3. null (Ed.)
    This work concerns the asymptotic behavior of solutions to a (strictly) subcritical fluid model for a data communication network, where file sizes are generally distributed and the network operates under a fair bandwidth-sharing policy. Here we consider fair bandwidth-sharing policies that are a slight generalization of the [Formula: see text]-fair policies introduced by Mo and Walrand [Mo J, Walrand J (2000) Fair end-to-end window-based congestion control. IEEE/ACM Trans. Networks 8(5):556–567.]. Since the year 2000, it has been a standing problem to prove stability of the data communications network model of Massoulié and Roberts [Massoulié L, Roberts J (2000) Bandwidth sharing and admission control for elastic traffic. Telecommunication Systems 15(1):185–201.], with general file sizes and operating under fair bandwidth sharing policies, when the offered load is less than capacity (subcritical conditions). A crucial step in an approach to this problem is to prove stability of subcritical fluid model solutions. In 2012, Paganini et al. [Paganini F, Tang A, Ferragut A, Andrew LLH (2012) Network stability under alpha fair bandwidth allocation with general file size distribution. IEEE Trans. Automatic Control 57(3):579–591.] introduced a Lyapunov function for this purpose and gave an argument, assuming that fluid model solutions are sufficiently smooth in time and space that they are strong solutions of a partial differential equation and assuming that no fluid level on any route touches zero before all route levels reach zero. The aim of the current paper is to prove stability of the subcritical fluid model without these strong assumptions. Starting with a slight generalization of the Lyapunov function proposed by Paganini et al., assuming that each component of the initial state of a measure-valued fluid model solution, as well as the file size distributions, have no atoms and have finite first moments, we prove absolute continuity in time of the composition of the Lyapunov function with any subcritical fluid model solution and describe the associated density. We use this to prove that the Lyapunov function composed with such a subcritical fluid model solution converges to zero as time goes to infinity. This implies that each component of the measure-valued fluid model solution converges vaguely on [Formula: see text] to the zero measure as time goes to infinity. Under the further assumption that the file size distributions have finite pth moments for some p > 1 and that each component of the initial state of the fluid model solution has finite pth moment, it is proved that the fluid model solution reaches the measure with all components equal to the zero measure in finite time and that the time to reach this zero state has a uniform bound for all fluid model solutions having a uniform bound on the initial total mass and the pth moment of each component of the initial state. In contrast to the analysis of Paganini et al., we do not need their strong smoothness assumptions on fluid model solutions and we rigorously treat the realistic, but singular situation, where the fluid level on some routes becomes zero, whereas other route levels remain positive. 
    more » « less
  4. The Electrical capacitance tomography (ECT) method has recently been adapted to obtain tomographic images of the cross section of a diesel particulate filter (DPF). However, a soot mass estimation algorithm is still needed to translate the ECT image pixel data to obtain soot load in the DPF. In this paper, we propose an estimation method to quantify the soot load in a DPF through an inverse algorithm that uses the ECT images commonly generated by a back-projection algorithm. The grayscale pixel data generated from ECT is used in a matrix equation to estimate the permittivity distribution of the cross section of the DPF. Since these permittivity data has direct correlation with the soot mass present inside the DPF, a permittivity to soot mass distribution relationship is established first. A numerical estimation algorithm is then developed to compute the soot mass accounting for the mass distribution across the cross-section of the DPF as well as the dimension of the DPF along the exhaust flow direction. Experimental data has been used to validate the proposed soot estimation algorithm which compared the estimated values with the actual measured soot mass. The estimated soot mass for various soot load amounts were found to correlate reasonably well with the measured soot masses in those cases. 
    more » « less
  5. Nano-indentation is a promising method to identify the constitutive parameters of soft materials, including soft tissues. Especially when materials are very small and heterogeneous, nano-indentation allows mechanical interrogation where traditional methods may fail. However, because nano-indentation does not yield a homogeneous deformation field, interpreting the resulting load–displacement curves is non-trivial and most investigators resort to simplified approaches based on the Hertzian solution. Unfortunately, for small samples and large indentation depths, these solutions are inaccurate. We set out to use machine learning to provide an alternative strategy. We first used the finite element method to create a large synthetic data set. We then used these data to train neural networks to inversely identify material parameters from load–displacement curves. To this end, we took two different approaches. First, we learned the indentation forward problem, which we then applied within an iterative framework to identify material parameters. Second, we learned the inverse problem of directly identifying material parameters. We show that both approaches are effective at identifying the parameters of the neo-Hookean and Gent models. Specifically, when applied to synthetic data, our approaches are accurate even for small sample sizes and at deep indentation. Additionally, our approaches are fast, especially compared to the inverse finite element approach. Finally, our approaches worked on unseen experimental data from thin mouse brain samples. Here, our approaches proved robust to experimental noise across over 1000 samples. By providing open access to our data and code, we hope to support others that conduct nano-indentation on soft materials. 
    more » « less