skip to main content


This content will become publicly available on September 1, 2025

Title: Long solution times or low solution quality: On trade-offs in choosing a power flow formulation for the Optimal Power Shutoff problem
The Optimal Power Shutoff (OPS) problem is an optimization problem that makes power line de-energization decisions in order to reduce the risk of igniting a wildfire, while minimizing the load shed of customers. This problem, with DC linear power flow equations, has been used in many studies in recent years. However, using linear approximations for power flow when making decisions on the network topology is known to cause challenges with AC feasibility of the resulting network, as studied in the related contexts of optimal transmission switching or grid restoration planning. This paper explores the accuracy of the DC OPS formulation and the ability to recover an AC-feasible power flow solution after de-energization decisions are made. We also extend the OPS problem to include variants with the AC, Second-Order-Cone, and Network-Flow power flow equations, and compare them to the DC approximation with respect to solution quality and time. The results highlight that the DC approximation overestimates the amount of load that can be served, leading to poor de-energization decisions. The AC and SOC-based formulations are better, but prohibitively slow to solve for even modestly sized networks thus demonstrating the need for new solution methods with better trade-offs between computational time and solution quality.  more » « less
Award ID(s):
2132904
PAR ID:
10537033
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Electric Power Systems Research
Volume:
234
Issue:
C
ISSN:
0378-7796
Page Range / eLocation ID:
110713
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents an algorithm to optimize the parameters of power systems equivalents to enhance the accuracy of the DC power flow approximation in reduced networks. Based on a zonal division of the network, the algorithm produces a reduced power system equivalent that captures inter-zonal flows with aggregated buses and equivalent transmission lines. The algorithm refines coefficient and bias parameters for the DC power flow model of the reduced network, aiming to minimize discrepancies between inter-zonal flows in DC and AC power flow results. Using optimization methods like Broyden-Fletcher-Goldfarb-Shanno (BFGS), Limited-memory BFGS (L-BFGS), and Truncated Newton Conjugate-Gradient (TNC) in an offline training phase, these parameters boost the accuracy of online DC power flow computations. In contrast to existing network equivalencing methods, the proposed algorithm optimizes accuracy over a specified range of operation as opposed to only considering a single nominal point. Numerical tests demonstrate substantial accuracy improvements over traditional equivalencing and approximation methods. 
    more » « less
  2. Newly, there has been significant research interest in the exact solution of the AC optimal power flow (AC-OPF) problem. A semideflnite relaxation solves many OPF problems globally. However, the real problem exists in which the semidefinite relaxation fails to yield the global solution. The appropriation of relaxation for AC-OPF depends on the success or unfulflllment of the SDP relaxation. This paper demonstrates a quadratic AC-OPF problem with a single negative eigenvalue in objective function subject to linear and conic constraints. The proposed solution method for AC-OPF model covers the classical AC economic dispatch problem that is known to be NP-hard. In this paper, by combining successive linear conic optimization (SLCO), convex relaxation and line search technique, we present a global algorithm for AC-OPF which can locate a globally optimal solution to the underlying AC-OPF within given tolerance of global optimum solution via solving linear conic optimization problems. The proposed algorithm is examined on modified IEEE 6-bus test system. The promising numerical results are described. 
    more » « less
  3. Power grid resource adequacy can be difficult to ensure with high penetrations of intermittent renewable energy. We explore enhancing resource adequacy by overbuilding renewables while modeling statistical correlations in renewable power at different sites. Overbuilding allows production during times of low power, and exploiting statistical correlations can reduce power variability and, subsequently, reduce needed renewable capacity. In this work, we present a stochastic optimization problem to size renewables and expand transmission while minimizing the expected dispatch cost. Our method uses statistical profiles of renewable production and embeds network constraints using the DC power flow equations. We assess our method’s effects on feasibility, load shedding, locational marginal prices, and generator curtailment. On the IEEE 9-bus system, we found that anti-correlation between generators reduced generation capacity needs with sufficient transmission. On the IEEE 30-bus system, we found that the optimal solution required significant overbuilding and curtailment of renewables regardless of the marginal cost of schedulable generation. 
    more » « less
  4. For fast timescales or long prediction horizons, the AC optimal power flow (OPF) problem becomes a computational challenge for large-scale, realistic AC networks. To overcome this challenge, this paper presents a novel network reduction methodology that leverages an efficient mixed-integer linear programming (MILP) formulation of a Kron-based reduction that is optimal in the sense that it balances the degree of the reduction with resulting modeling errors in the reduced network. The method takes as inputs the full AC network and a pre-computed library of AC load flow data and uses the graph Laplacian to constraint nodal reductions to only be feasible for neighbors of non-reduced nodes. This results in a highly effective MILP formulation which is embedded within an iterative scheme to successively improve the Kron-based network reduction until convergence. The resulting optimal network reduction is, thus, grounded in the physics of the full network. The accuracy of the network reduction methodology is then explored for a 100+ node medium-voltage radial distribution feeder example across a wide range of operating conditions. It is finally shown that a network reduction of 25-85% can be achieved within seconds and with worst-case voltage magnitude deviation errors within any super node cluster of less than 0.01pu. These results illustrate that the proposed optimization-based approach to Kron reduction of networks is viable for larger networks and suitable for use within various power system applications. 
    more » « less
  5. Power flow computations are fundamental to many power system studies. Obtaining a converged power flow case is not a trivial task especially in large power grids due to the non-linear nature of the power flow equations. One key challenge is that the widely used Newton based power flow methods are sensitive to the initial voltage magnitude and angle estimates, and a bad initial estimate would lead to non-convergence. This paper addresses this challenge by developing a random-forest (RF) machine learning model to provide better initial voltage magnitude and angle estimates towards achieving power flow convergence. This method was implemented on a real ERCOT 6102 bus system under various operating conditions. By providing better Newton-Raphson initialization, the RF model precipitated the solution of 2,106 cases out of 3,899 non-converging dispatches. These cases could not be solved from flat start or by initialization with the voltage solution of a reference case. Results obtained from the RF initializer performed better when compared with DC power flow initialization, Linear regression, and Decision Trees. 
    more » « less