skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long solution times or low solution quality: On trade-offs in choosing a power flow formulation for the Optimal Power Shutoff problem
The Optimal Power Shutoff (OPS) problem is an optimization problem that makes power line de-energization decisions in order to reduce the risk of igniting a wildfire, while minimizing the load shed of customers. This problem, with DC linear power flow equations, has been used in many studies in recent years. However, using linear approximations for power flow when making decisions on the network topology is known to cause challenges with AC feasibility of the resulting network, as studied in the related contexts of optimal transmission switching or grid restoration planning. This paper explores the accuracy of the DC OPS formulation and the ability to recover an AC-feasible power flow solution after de-energization decisions are made. We also extend the OPS problem to include variants with the AC, Second-Order-Cone, and Network-Flow power flow equations, and compare them to the DC approximation with respect to solution quality and time. The results highlight that the DC approximation overestimates the amount of load that can be served, leading to poor de-energization decisions. The AC and SOC-based formulations are better, but prohibitively slow to solve for even modestly sized networks thus demonstrating the need for new solution methods with better trade-offs between computational time and solution quality.  more » « less
Award ID(s):
2132904 2045860
PAR ID:
10537033
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Electric Power Systems Research
Volume:
234
Issue:
C
ISSN:
0378-7796
Page Range / eLocation ID:
110713
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optimal Transmission Switching (OTS) problems minimize operational costs while treating both the transmission line energization statuses and generator setpoints as decision variables. The combination of nonlinearities from an AC power flow model and discrete variables associated with line statuses makes AC-OTS a computationally challenging Mixed-Integer Nonlinear Program (MINLP). To address these challenges, the DC power flow approximation is often used to obtain a DC-OTS formulation expressed as a Mixed-Integer Linear Program (MILP). However, this approximation often leads to suboptimal or infeasible switching decisions when evaluated with an AC power flow model. This paper proposes an enhanced DC-OTS formulation that leverages techniques for training machine learning models to optimize the DC power flow model's parameters. By optimally selecting parameter values that align flows in the DC power flow model with apparent power flows—incorporating both real and reactive components—from AC Optimal Power Flow (OPF) solutions, our method more accurately captures line congestion behavior. Integrating these optimized parameters into the DC-OTS formulation significantly improves the accuracy of switching decisions and reduces discrepancies between DC-OTS and AC-OTS solutions. We compare our optimized DC-OTS model against traditional OTS approaches, including DC-OTS, Linear Programming AC (LPAC)-OTS, and Quadratic Convex (QC)-OTS. Numeric results show that switching decisions from our model yield better performance when evaluated using an AC power flow model, with up to 44% cost reductions in some cases. 
    more » « less
  2. Optimization problems that involve topology opti- mization in scenarios with large scale outages, such as post- disaster restoration or public safety power shutoff planning, are very challenging to solve. Using simple power flow representa- tions such as DC power flow or network flow models results in low quality solutions which requires significantly higher- than-predicted load shed to become AC feasible. Recent work has shown that formulations based on the Second Order Cone (SOC) power flow formulation find very high quality solutions with low load shed, but the computational burden of these formulations remains a significant challenge. With the aim of reducing computational time while maintaining high solution quality, this work explores formulations which replace the conic constraints with a small number of linear cuts. The goal of this approach is not to find an exact power flow solution, but rather to identify good binary decisions, where the power flow can be resolved after the binary variables are fixed. We find that a simple reformulation of the Second Order Cone Optimal Power Shutoff problem can greatly improve the solution speed, but that a full linearization of the SOC voltage cone equation results in an overestimation of the amount of power that can be delivered to loads. 
    more » « less
  3. This paper presents an algorithm to optimize the parameters of power systems equivalents to enhance the accuracy of the DC power flow approximation in reduced networks. Based on a zonal division of the network, the algorithm produces a reduced power system equivalent that captures inter-zonal flows with aggregated buses and equivalent transmission lines. The algorithm refines coefficient and bias parameters for the DC power flow model of the reduced network, aiming to minimize discrepancies between inter-zonal flows in DC and AC power flow results. Using optimization methods like Broyden-Fletcher-Goldfarb-Shanno (BFGS), Limited-memory BFGS (L-BFGS), and Truncated Newton Conjugate-Gradient (TNC) in an offline training phase, these parameters boost the accuracy of online DC power flow computations. In contrast to existing network equivalencing methods, the proposed algorithm optimizes accuracy over a specified range of operation as opposed to only considering a single nominal point. Numerical tests demonstrate substantial accuracy improvements over traditional equivalencing and approximation methods. 
    more » « less
  4. Power grid resource adequacy can be difficult to ensure with high penetrations of intermittent renewable energy. We explore enhancing resource adequacy by overbuilding renewables while modeling statistical correlations in renewable power at different sites. Overbuilding allows production during times of low power, and exploiting statistical correlations can reduce power variability and, subsequently, reduce needed renewable capacity. In this work, we present a stochastic optimization problem to size renewables and expand transmission while minimizing the expected dispatch cost. Our method uses statistical profiles of renewable production and embeds network constraints using the DC power flow equations. We assess our method’s effects on feasibility, load shedding, locational marginal prices, and generator curtailment. On the IEEE 9-bus system, we found that anti-correlation between generators reduced generation capacity needs with sufficient transmission. On the IEEE 30-bus system, we found that the optimal solution required significant overbuilding and curtailment of renewables regardless of the marginal cost of schedulable generation. 
    more » « less
  5. Newly, there has been significant research interest in the exact solution of the AC optimal power flow (AC-OPF) problem. A semideflnite relaxation solves many OPF problems globally. However, the real problem exists in which the semidefinite relaxation fails to yield the global solution. The appropriation of relaxation for AC-OPF depends on the success or unfulflllment of the SDP relaxation. This paper demonstrates a quadratic AC-OPF problem with a single negative eigenvalue in objective function subject to linear and conic constraints. The proposed solution method for AC-OPF model covers the classical AC economic dispatch problem that is known to be NP-hard. In this paper, by combining successive linear conic optimization (SLCO), convex relaxation and line search technique, we present a global algorithm for AC-OPF which can locate a globally optimal solution to the underlying AC-OPF within given tolerance of global optimum solution via solving linear conic optimization problems. The proposed algorithm is examined on modified IEEE 6-bus test system. The promising numerical results are described. 
    more » « less